추천 글

“GAN 인 액션”이 출간되었습니다.

GAN 인 액션“이 출간되었습니다! 284페이지 완전 컬러입니다! 🙂

이 책은 야쿠프 란그르와 블라디미르 보크의 아마존 베스트셀러인 <GANs In Action>의 번역서입니다.(아마존매닝)

좋은 책을 믿고 맡겨 주신 한빛미디어와 윤나리 편집자님께 감사드립니다. 무엇보다도 이 책을 기다려 주신 독자분들께 감사드립니다. 책을 읽는 내내 즐거운 여행이 되셨으면 좋겠습니다! 온라인/오프라인 서점에서 판매중입니다. Yes24알라딘, 교보문고한빛미디어

추천 글

‘핸즈온 머신러닝 2판’이 출간되었습니다!

오렐리앙 제롱Aurélien Géron이 쓴 아마존 베스트 셀러 “Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow 2nd Edition“을 번역한 핸즈온 머신러닝 2판이 출간되었습니다.

1판도 좋았지만 2판은 더욱 더 알차고 폭넓은 주제를 다루고 있습니다. 1판에서 아쉬웠던 비지도 학습과 텐서플로 2로 바뀌면서 변경된 내용, 새로운 신경망 구조를 가득 담고 있습니다.

번역서도 원서와 마찬가지로 풀 컬러로 인쇄됩니다. 전체 페이지는 952페이지 입니다. 무엇보다도 딥러닝을 다루는 2부의 내용이 크게 늘었기 때문입니다. 케라스 뿐만 아니라 RNN의 최근 발전을 많이 포함하고 있고 GAN을 새롭게 추가했습니다. 또한 강화 학습 챕터도 크게 증가했습니다. 한마디로 백과사전이 따로 없죠! 🙂

이 책은 온라인/오프라인 서점에서 판매 중입니다! Yes24교보문고알라딘, 한빛미디어

  • 이 책의 주피터 노트북을 한글로 번역하여 제 깃허브에 올리고 있습니다.
  • 혼자 공부하시는 분들을 위해 유튜브에 동영상 강좌를 올리고 있습니다!
  • 이 동영상은 인프런에서도 볼 수 있습니다.
추천 글

“Do it! 딥러닝”이 출간되었습니다.

x9791163031093Do it! 딥러닝 입문“이 출간되었습니다! 이 책은 번역서가 아니라 제가 직접 쓴 책입니다! 🙂

알고리즘 공식을 유도하고 직접 파이썬으로 구현해 보면서 딥러닝에 숨겨진 실체를 흥미진진하게 파헤칩니다. 또 텐서플로를 사용해 실전 딥러닝 구현 감각을 익히도록 돕습니다. 좋은 출판사의 도움을 받아 훌륭한 일러스트와 알찬 내용으로 꾸몄습니다. 딥러닝을 어떻게 시작할지 막막하다면 이 책을 자신있게 권해드립니다.

온라인/오프라인 서점에서 판매중입니다. [교보문고] [Yes24]

감사합니다!!! 🙂

  • 코로나 때문에 스터디를 진행하지 못하지만 대신 유튜브 강의를 올리고 있습니다! 재미있게 봐 주세요. 🙂
  • 이 영상은 구름 에듀에서도 볼 수 있습니다.

“핸즈온 머신러닝 2″의 넘파이, 맷플롯립, 판다스 튜토리얼

<핸즈온 머신러닝 2>의 깃허브에서 제공하는 넘파이(tools_numpy.ipynb), 맷플롯립(tools_matplotlib.ipynb), 판다스 튜토리얼(tools_pandas.ipynb) 번역을 모두 마쳤습니다! 🙂

이 노트북은 깃허브에서 볼 수 있고 주피터 노트북 뷰어에서 볼 수 있습니다. 특히 ml-ko 사이트에서는 html로 빠르게 코드와 결과를 볼 수 있습니다. 노트북에 코랩 링크도 포함되어 있으니 시간날 때 언제든지 따라해 보세요!

사이킷런의 load_boston() 함수가 삭제될 예정입니다.

사이킷런의 load_boston() 함수가 삭제될 예정입니다. 이 데이터셋의 문제는 특성 “B” 때문입니다. 문서에서 볼 수 있듯이 이 특성은 도시의 흑인 비율을 사용합니다. 흑인 비율이 주택 가격에 미치는 요소인 거죠. 시대가 시대인만큼 요즘엔 수용하기 쉽지 않습니다. 오히려 이제야 문제가 제기되었다는 것이 부끄러울 수 있죠.

이 데이터를 삭제할지, 특성만 제거할지 의견이 다양했는데요. 결국 deprecate 경고를 내고 0.26 버전 즈음에서 삭제될 것 같습니다. 문제는 이 데이터셋이 책이나 블로그 등에 예제로 너무 많이 쓰였다는 점입니다. 제가 번역한 책에도 몇 군데 있을 것 같네요. ㅠ.ㅠ

사이킷런에서는 사라지겠지만 fetch_openml 함수를 사용하여 OpenML에서 가져올 수 있습니다.

from sklearn import datasets
X, y = datasets.fetch_openml('boston', return_X_y=True)

더 자세한 내용은 사이킷런 깃허브의 이슈를 참고하세요.

TF Python 3.5 support drop, TF Java release

Python 3.5 버전의 지원이 2020년 9월에 종료됨에 따라 파이썬 3.5용 텐서플로도 10월부터 지원이 중지됩니다. 2020년 10월 13일부터 나이틀리(nightly) 패키지가 만들어지지 않고 향후 TF 릴리스에도 파이썬 3.5 버전은 더 이상 포함되지 않습니다. 현재 텐서플로는 파이썬 3.5, 3.6, 3.7, 3.8을 지원하고 있습니다.

텐서플로 Java 0.2.0 버전이 릴리스되었습니다. 이는 첫 번째 알파 버전으로 텐서플로 2.3.1 버전을 기반으로 구성되었습니다. 자바 사용자들에게는 기쁜 소식입니다. 하지만 자바 버전이 왜 필요한지 의문을 다는 사람도 있네요. 🙂

“케라스 창시자에게 배우는 딥러닝” 코드 TensorFlow 2 업데이트 안내

늦은 감이 있지만 <케라스 창시자에게 배우는 딥러닝> 책의 주피터 노트북을 텐서플로 2 기반으로 변경한 버전을 깃허브의 tf2 브랜치에 올렸습니다. 아쉽게도 몇 개의 노트북은 텐서플로 2와 호환되지 않아 부득이하게 tf.compat.v1.disable_v2_behavior() 를 사용했습니다.

텐서플로 2에 포함된 케라스 API를 사용하시는 경우에 조금 도움이 되셨으면 좋겠네요. 감사합니다! 🙂

DL for CV & Tiny ML 강의

흥미로운 두 개의 강의를 소개해 드립니다.

스탠포드에서 cs231n Convolutional Neural Networks for Visual Recognition을 진행했던 Justin Johnson이 미시간 대학교로 옮겼군요. 미시간 대학에서 진행하는 강의는 Deep Learning for Computer Vision입니다. 지난해 가을 강의가 유투브에 모두 올라왔습니다. 최신 기술들도 많이 추가했다고 하니 이전에 cs231n을 들었더라도 리프레시하는 겸 들어보면 좋을 것 같네요. 삽엽충으로 시작하는 페이페이 리 교수의 슬라이드보다 시작부분이 좋습니다. 딥러닝 역사를 두 개의 타임라인으로 나란히 놓고 설명하는게 좋네요.

edx.org에서 HarvardX와 함께 Tiny ML 과정을 가을에 연다고 합니다(https://programs.edx.org/harvard-tiny-ml). 올 가을에 개강한다고 하니 관심이 있다면 메일링 리스트에 등록하는 것도 좋습니다. 임베디드 장치를 위한 머신러닝 강좌로 직접 아두이노를 활용하여 강의를 진행할 것으로 보입니다. 아마도 텐서플로 Lite를 사용하리라 생각됩니다! 🙂

[핸즈온 머신러닝 2판], [Do It! 딥러닝 입문], [파이썬을 활용한 머신러닝 쿡북], [머신러닝 교과서] 텐서플로 2.3.0 업데이트 안내

핸즈온 머신러닝 2판, Do It! 딥러닝 입문, 파이썬을 활용한 머신러닝 쿡북, 머신러닝 교과서의 깃허브 코드를 텐서플로 2.3.0에 맞추어 업데이트했습니다.

핸즈온 머신러닝 2판의 18장은 최신 tf-agents가 텐서플로 2.3.0과 호환되지 않아 업데이트되지 못했습니다.

TensorFlow 2.3.0 Release

텐서플로 2.3.0 버전이 릴리스되었습니다.

TPUStrategy가 experimental을 벗고 정식 API가 되었습니다. TF Porfiler에 새로운 기능이 추가되었습니다. image_dataset_from_directory, text_dataset_from_directory, timeseries_dataset_from_array를 비롯해 여러 개의 케라스 전처리 층이 추가 되었습니다. 자세한 내용은 릴리스 노트를 참고하세요.

텐서플로 2.3.0은 다음 명령으로 설치할 수 있습니다.

# for cpu and gpu
$ pip install --upgrade tensorflow
# cpu-only
$ pip install --upgrade tensorflow-cpu

케라스 2.4.0 버전이 릴리스되었습니다.

케라스 2.4.0 버전이 릴리스되었습니다. 이전에 언급된 대로 keras-team/keras 레파지토리는 더이상 멀티 백엔드를 지원하지 않습니다. 2.4.0 버전은 기존 구현 코드를 모두 삭제하고 대신 tensorflow.keras로 리다이렉션합니다. 향후에는 tensorflow.keras 구현이 keras-team/keras로 옮겨올 것 같습니다.

제가 번역한 책 중에 케라스 멀티 백엔드 케라스 버전을 사용하는 책은 <케라스 창시자에게 배우는 딥러닝>과 <미술관에 GAN 딥러닝>입니다. 케라스를 최신 버전으로 업데이트하면 코드 결과가 크게 달라질 수 있습니다. 대신 케라스 2.2.4 버전을 사용하세요.

$ pip install keras==2.2.4

감사합니다!