구글에서 이번주 신경망 기계번역, 즉 NMTneural machine translation를 위한 seq2seq 모델을 오픈소스로 공개하였습니다. 이 소스는 텐서플로우로 작성되어 있으며 깃허브에 공개되어 있습니다. 이 소스는 같이 공개된 ‘Massive Exploration of Neural Machine Translation Architectures‘ 페이퍼에서 사용된 코드입니다. 이 페이퍼에서 25만 GPU 시간을 들여 다양한 하이퍼파라미터 튜닝을 한 결과를 공유하고 있습니다. 어쩌면 많은 애플리케이션들이 연이어 나오는 뛰어난 알고리즘보다 이런 실험 결과를 더 목말라하고 있을지 모르겠습니다. 깃허브에 있는 tf-seq2seq 코드는 마치 일반 애플리케이션처럼 다운로드 받아 yaml로 모델을 정의하고 학습시킬 수 있습니다. 딥러닝 라이브러리들이 설정 방식에서 코딩 방식으로 빠르게 전환되더니 도메인 특화된 모델은 다시 패키지화될 수 있는것 아닌가 예상해 봅니다. 자세한 사용법은 도큐먼트를 참고하세요. 비록 한글 데이터는 없지만 구글의 선빵은 놀랍습니다. 🙂
tf-seq2seq: open-source seq2seq framework in TF
댓글 남기기