세바스찬 라쉬카Sebastian Raschka의 Python Machine Learning의 2판이 준비되고 있습니다. scikit-learn을 중심으로 쓰여진 파이썬 머신러닝 도서로 인기가 많았던 1판에 비해 여러가지 내용이 추가되어 페이지도 많이 늘어 났습니다(
501 페이지 600 페이지가 넘네요).
가장 큰 변화는 구글 텐서플로TensorFlow에 대한 소개와 CNN, RNN 챕터를 추가한 것입니다. 아래 목차를 참고하세요.
- Machine Learning – Giving Computers the Ability to Learn from Data
- Training Machine Learning Algorithms for Classification
- A Tour of Machine Learning Classifiers Using Scikit-Learn
- Building Good Training Sets – Data Pre-Processing
- Compressing Data via Dimensionality Reduction
- Learning Best Practices for Model Evaluation and Hyperparameter Optimization
- Combining Different Models for Ensemble Learning
- Applying Machine Learning to Sentiment Analysis
- Embedding a Machine Learning Model into a Web Application
- Predicting Continuous Target Variables with Regression Analysis
- Working with Unlabeled Data – Clustering Analysis
- Implementing a Multi-layer Artificial Neural Network from Scratch
- Parallelizing Neural Network Training with TensorFlow
- Going Deeper: The Mechanics of TensorFlow
- Classifying Images with Deep Convolutional Neural Networks
- Modeling Sequential Data Using Recurrent Neural Networks
이 책은 9월에 출간될 예정이지만 소스 코드는 깃허브에서 주피터 노트북으로 읽으실 수 있습니다.