“핸즈온 머신러닝” 사이킷런 0.20 업데이트

사이킷런 0.20 버전에 맞추어 <핸즈온 머신러닝> 도서에 반영될 내용을 정리하였습니다. 깃허브 주피터 노트북에는 더 많은 내용이 반영되어 있습니다! 🙂

  • sklearn.preprocessing.Imputer 클래스는 사이킷런 0.22 버전에서 삭제될 예정입니다. 대신 0.20 버전에서 추가된 sklearn.impute.SimpleImputer 클래스로 변경합니다.
    • (p100) 두 번째 문단 시작 부분에 “사이킷런의 Imputer는 누락된 … 지정하여 Imputer의 객체를 생성합니다.”를 “사이킷런의 SimpleImputer는 누락된 … 지정하여 SimpleImputer의 객체를 생성합니다.”로 변경합니다. 첫 번째 코드 블럭에서
      from sklearn.preprocessing import Imputer
      imputer = Imputer(strategy=”median”)

      from sklearn.impute import SimpleImputer
      imputer = SimpleImputer(strategy=”median”)
      로 변경합니다.
    • (p101) 주석 34의 첫 문장에서 ‘(예를 들면 Imputer(strategy=”median”) )’를 ‘(예를 들면 SimpleImputer(strategy=”median”) )’로 변경합니다.
    • (p108, 109) 파이프라인 정의 코드에서 ‘Imputer(strategy=”median”)’을 ‘SimpleImputer(strategy=”median”)’로 변경합니다.
  • OneHotEncoder 클래스가 종전에는 훈련 데이터에 나타난 0~최댓값 사이 범위를 카테고리로 인식하여 원-핫 인코딩하지만 앞으로는 고유한 정수 값 또는 문자열을 원-핫 인코딩할 수 있습니다. 정수 특성과 문자열 특성이 함께 있는 경우에는 에러가 발생합니다. 경고 메세지를 피하고 고유한 값을 사용하는 방식을 선택하기 위해 categories 매개변수를 'auto'로 지정합니다.
    • (p103) 마지막 코드 블럭에서 encoder = OneHotEncoder()를 encoder = OneHotEncoder(categories='auto')로 변경합니다.
  • 0.22 버전에서 RandomForestClassifierRandomForestRegressor 모델의 n_estimators 기본값이 10에서 100으로 늘어납니다. 경고 메세지를 피하기 위해 명시적으로 트리 개수를 10으로 지정합니다.
    • (p114, p116) 코드 블럭에서 RandomForestRegressor()를 RandomForestRegressor(n_estimators=10)으로 변경합니다.
    • (p139, p244) 코드 블럭에서 RandomForestClassifier()를 RandomForestClassifier(n_estimators=10)으로 변경합니다.
  • 공개된 훈련 데이터를 다운로드 받는 fetch_mldata 함수가 mldata.org 사이트의 잦은 에러로 openml.org 를 사용하는 fetch_openml 함수로 변경되었습니다.
    • (p124) mnist = fetch_mldata('MNIST original')을 mnist = fetch_openml('mnist_784', version=1)로 변경합니다. openml.org의 MNIST 타깃 데이터는 문자열로 저장되어 있으므로 mnist.target = mnist.target.astype(np.int)와 같이 정수로 바꾸는 것이 좋습니다.
  • 사이킷런 0.22 버전에서 LogisticRegression 클래스의 solver 매개변수 기본값이 'liblinear'에서 'lbfgs'로 변경될 예정입니다. 경고 메세지를 피하고 출력 결과를 일관되게 유지하기 위하여 solver 매개변수를 'liblinear'로 설정합니다.
    • (p192, p244) LogisticRegression()을 LogisticRegression(solver='liblinear')로 변경합니다.
  • SVCSVR ​클래스의 gamma 매개변수 옵션에 'auto'외에 'scale'이 추가되었습니다. 'auto'는 1/n_features, 즉 특성 개수의 역수입니다. 'scale'은 1/(n_features * X.std())로 스케일 조정이 되지 않은 특성에서 더 좋은 결과를 만듭니다. 사이킷런 0.22 버전부터는 gamma 매개변수의 기본값이 'auto'에서 'scale'로 변경됩니다. 서포트 벡터 머신을 사용하기 전에 특성을 표준화 전처리하면 'scale'과 'auto'는 차이가 없습니다. 경고를 피하기 위해 명시적으로 'auto' 옵션을 지정합니다.
    • (p213) 맨 아래 코드 블럭에서 SVR(kernel="poly", degree=2, C=100, epsilon=0.1)SVR(kernel="poly", gamma='auto', degree=2, C=100, epsilon=0.1)로 변경합니다.
    • (p244) SVC()를 SVC(gamma='auto')로 변경합니다.
  • LinearSVC의 verbose 매개변수가 0이 아닐 때 max_iter 반복 횟수가 부족하면 경고 메세지가 출력됩니다. 사이킷런 0.20 버전부터는 verbose 매개변수에 상관없이 max_iter 반복 안에 수렴하지 않을 경우 반복 횟수 증가 경고가 나옵니다. 경고 메세지를 피하기 위해 max_iter 매개변수의 기본값을 1,000에서 2,000으로 증가시킵니다.
    • (p206) LinearSVC(C=10, loss="hinge")를 LinearSVC(C=10, loss="hinge", max_iter=2000)으로 변경합니다.

답글 남기기

아래 항목을 채우거나 오른쪽 아이콘 중 하나를 클릭하여 로그 인 하세요:

WordPress.com 로고

WordPress.com의 계정을 사용하여 댓글을 남깁니다. 로그아웃 /  변경 )

Facebook 사진

Facebook의 계정을 사용하여 댓글을 남깁니다. 로그아웃 /  변경 )

%s에 연결하는 중

This site uses Akismet to reduce spam. Learn how your comment data is processed.