월간 보관물: 2020 11월

핸즈온 머신러닝 2 에러타 안내

안녕하세요. 핸즈온 머신러닝 2에 새롭게 에러타가 많이 추가되었습니다. 이번 에러타는 원서에 누적된 오류 보고를 포함하였고 사이킷런과 텐서플로 최신 버전에서 변경된 내용을 반영하였습니다. 다음 에러타 항목을 참고해 주세요. 핸즈온 머신러닝 2의 전체 에러타는 여기를 참고해 주세요. 감사합니다!

  1. (p100) 두 번째 문단 끝에 다음처럼 주석을 추가합니다. “… SimpleImputer의 객체를 생성합니다.<주석>옮긴이_ 사이킷런 0.22버전에서 최근접 이웃 방식으로 누락된 값을 대체하는 KNNImputer 클래스가 추가되었습니다.</주석>”
  2. (p109) 첫 번째 문단 끝에 다음처럼 주석을 추가합니다. “… 변환을 적용해보겠습니다.<주석>옮긴이_ 사이킷런 0.22버전에서 열 이름이나 데이터 타입을 기반으로 열을 선택할 수 있는 make_column_selector() 함수가 추가되었습니다.</주석>”
  3. (p118) 54번 주석 끝에 다음 문장을 추가합니다. “사이킷런 0.24버전에서 파라미터 탐색 범위를 좁혀가면서 컴퓨팅 자원을 늘려가는 HalvingGridSearchCV와 HalvingRandomSearchCV가 추가됩니다. 이 예제는 https://bit.ly/halving-grid-search를 참고하세요.”
  4. (p128) 첫 번째 문장 끝에 다음처럼 주석을 추가합니다. “… 구조를 가지고 있습니다.<주석>옮긴이_ 사이킷런 0.22버전에서 fetch_openml() 함수에 as_frame 매개변수가 추가되었습니다. 이 매개변수를 True로 설정하면 판다스 데이터프레임을 반환합니다.</주석>”
  5. (p140) 6번 주석 끝에 다음 문장을 추가합니다. “사이킷런 0.22버전에서 정밀도/재현율 곡선을 그려주는 plot_precision_recall_curve() 함수가 추가되었습니다.”
  6. (p142) 첫 번째 문장 끝에 다음처럼 주석을 추가합니다. “… 그래프를 그립니다.<주석>옮긴이_ 사이킷런 0.22버전에서 ROC 곡선을 그려주는 plot_roc_curve() 함수가 추가되었습니다.</주석>”
  7. (p149) 첫 번째 문장 끝에 다음처럼 주석을 추가합니다. “… 편리할 때가 많습니다.<주석>옮긴이_ 사이킷런 0.22버전에서 오차 행렬을 그래프로 그려주는 plot_confusion_matrix() 함수가 추가되었습니다.</주석>”
  8. (p188) 첫 번째 문단 2번째 줄에서 “2차방정식처럼 보이며 거의 선형적입니다“를 “3차방정식처럼 보입니다“로 정정합니다.
  9. (p230) 1번 주석 끝에 다음 문장을 추가합니다. “사이킷런 0.21버전에서 dot 파일을 만들지 않고 바로 트리를 그릴 수 있는 plot_tree() 함수도 추가되었습니다.”
  10. (p236) 5번 주석을 다음과 같이 바꿉니다. “옮긴이_ 사이킷런 0.21버전에서 히스토그램 기반 그레이디언트 부스팅이 추가되었고 presort 매개변수로 얻을 수 있는 성능 향상이 크지 않기 때문에 사이킷런 0.24버전에서 결정 트리와 그레이디언트 부스팅 클래스의 presort 매개변수가 삭제됩니다.”
  11. (p238) 9번 주석에서 “… min_impurity_decrease 분할 대상이 되기 위해 … min_impurity_split가 추가되었습니다“를 “… min_impurity_decrease가 추가되었습니다. 분할 대상이 되기 위해 … min_impurity_split는 0.25버전에서 삭제됩니다“로 수정합니다. 또 10번 주석 끝에서 “… 지원합니다“를 “… 지원했지만 0.22버전에서 비용 복잡도 기반의 사후 가지치기를 위한 ccp_alpha 매개변수가 결정 트리와 트리 기반의 앙상블 모델에 추가되었습니다“로 수정합니다.
  12. (p254) 7.4절 아래 두 번째 문장 끝에 다음처럼 주석을 추가합니다. “… 크기로 지정합니다.<주석>옮긴이_ 사이킷런 0.22버전에서 랜덤 포레스트 클래스에 부트스트랩 샘플 크기를 지정할 수 있는 max_samples 매개변수가 추가되었습니다. 샘플 크기를 정수로 입력하거나 비율을 실수로 지정할 수 있습니다. 기본값은 훈련 세트 전체 크기입니다.<주석>”
  13. (p262) 7.5.2절에서 두 번째 문단, 첫 번째 줄에서 “그레이디언트 부스팅은 회귀 문제에도 아주 잘 작동합니다”를 “그레이디언트 부스팅은 분류 문제에도 아주 잘 작동합니다”로 정정합니다.
  14. (p266) 첫 번째 문단 끝에 다음처럼 주석을 추가합니다. “… 훈련을 멈춥니다.<주석>옮긴이_ 사이킷런 0.20버전에서 그래디언트 부스팅에 조기 종료 기능이 추가되었습니다. 훈련 데이터에서 validation_fraction 비율(기본값 0.1)만큼 떼어 내어 측정한 손실이 n_iter_no_change 반복 동안에 tol 값(기본값 1e-4) 이상 향상되지 않으면 훈련이 멈춥니다.</주석>”
  15. (p267) 두 번째 문단 끝에 다음처럼 주석을 추가합니다. “… 매우 비슷합니다.<주석>옮긴이_ 이외에도 히스토그램 기반 그레이디언트 부스팅을 구현한 LightGBM(https://lightgbm.readthedocs.io)이 있습니다. 사이킷런 0.21버전에서 히스토그램 기반 그레이디언트 부스팅을 구현한 HistGradientBoostingClassifier와 HistGradientBoostingRegressor가 추가되었습니다.</주석>”
  16. (p271) 첫 번째 문장 끝에서 다음처럼 주석을 추가합니다. “… 지원하지 않습니다.<주석>옮긴이_ 사이킷런 0.22버전에서 StackingClassifier와 StackingRegressor가 추가되었습니다.</주석>”
  17. (p319) 9.1.5절 아래 첫 번째 문단 끝에 다음처럼 주석을 추가합니다. “… 훈련해보겠습니다.<주석>옮긴이_ 사이킷런 0.24버전에서 준지도 학습을 위한 SelfTrainingClassifier가 추가됩니다.</주석>”
  18. (p358) 첫 번째 문단 끝에서 “… 다중 출력 분류기multioutput classifier입니다.”를 “… 다중 레이블 분류기multilabel classifier입니다.”로 정정합니다.
  19. (p380) 아래에서 두 번째 문단 끝에서 “(89% 검증 정확도에 가까이 도달할 것입니다)”를 “(89.4% 검증 정확도에 가까이 도달할 것입니다)”로 수정합니다.
  20. (p405) 페이지 끝에 다음처럼 주석을 추가합니다. “… 배치 크기를 사용해보세요.<주석>옮긴이_ 텐서플로 2.4버전에서 케라스 모델의 compile() 메서드에 있는 steps_per_execution 매개변수를 1이상으로 설정하면 계산 그래프를 한 번 실행할 때 여러 배치를 처리할 수 있기 때문에 GPU를 최대로 활용하고 배치 크기를 바꾸지 않고 훈련 속도를 높일 수 있습니다.</주석>”
  21. (p408) 6번 문제 두 번째와 세 번째 항목에서 “가중치 벡터“를 “가중치 행렬“로 정정합니다.
  22. (p465) 12.2절 아래 첫 번째 문단 끝에 다음처럼 주석을 추가합니다. “… 방법을 알아봅니다.<주석>옮긴이_ 텐서플로 2.4버전에서 넘파이 호환 API인 tf.experimental.numpy가 추가되었습니다.</주석>”
  23. (p475) 첫 번째 코드 블럭에서 my_softplus 함수 옆의 주석을 “# tf.nn.softplus(z)와 반환값이 같습니다.“에서 “# tf.nn.softplus(z)가 큰 입력을 더 잘 다룹니다.“로 수정합니다.
  24. (p492) 22번 주석 끝에 다음 문장을 추가합니다. “이 예는 번역서 깃허브에 있는 custom_model_in_keras.ipynb 주피터 노트북을 참고하세요.”
  25. (p531) 13.3.3절 아래 첫 번째 문장 끝에 다음처럼 주석을 추가합니다. “… 노력하고 있습니다.<주석>옮긴이_ tf.keras.layers.experimental.preprocessing 아래 이미지 처리, 이미지 증식, 범주형 데이터에 관련된 전처리 층이 추가되었습니다.</주석>”
  26. (p633) 첫 번째 문단 마지막 부분에 “타깃(마지막 글자)를 분리하겠습니다”를 “타깃(마지막 100개의글자)를 분리하겠습니다”로 정정합니다.
  27. (p662) [식 16-2] 위 두 번째 줄에서 “아래쪽에 (전치되어) 표현되어 있습니다”를 “위쪽에 (전치되어) 표현되어 있습니다”로 정정합니다.
  28. (p663) 위에서 네 번째 줄에서 “왼쪽 아래 수직 점선으로”를 “왼쪽  수직 점선으로”로 정정합니다.
  29. (p711) [그림 17-19] 위의 “예를 들어 생성자의 출력을 ~ 풀링 층이 뒤따릅니다).” 문단을 다음 문단으로 교체합니다.
    “예를 들어 생성자의 출력을 4 × 4에서 8 × 8로 크게하려면(그림 17-19) 기존 합성곱 층(“합성곱 층 1”)에 (최근접 이웃 필터링을 사용한27) 업샘플링 층을 추가하여 8 × 8 크기 특성 맵을 출력합니다. 이 특성 맵이 새로운 합성곱 층(“합성곱 층 2”)으로 주입되고 다시 새로운 출력 합성곱 층으로 주입됩니다. “합성곱 층 1”의 훈련된 가중치를 잃지 않기 위해 ([그림 17-19]에 점선으로 표시된) 두 개의 새로운 합성곱 층을 점진적으로 페이드-인fade-in하고 원래 출력층을 페이드-아웃fade-out합니다. 이렇게 하기위해 새로운 출력(가중치 α)과 원래 출력(가중치 1 – α)의 가중치 합으로 최종 출력을 만듭니다. 비슷한 페이드-인fade-in/페이드-아웃fade-out 기법이 판별자에 새로운 합성곱 층을 추가할 때 사용됩니다(다운샘플링을 위해 평균 풀링 층이 뒤따릅니다). 모든 합성곱 층은 “same” 스트라이드 1을 사용하므로 입력의 높이와 너비를 보존합니다. 원래 합성곱 층도 마찬가지입니다. 따라서 (입력이 8 × 8이기 때문에) 8 × 8 출력을 만듭니다. 마지막으로 출력층의 커널 크기는 1입니다. 이를 사용해 입력을 필요한 컬러 채널 수 (일반적으로 3)로 투영합니다.”
  30. (p756) 위에서 3번째 줄에 “오차는 전이 (s, r, s’)가 매우 놀랍다는”를 오차는 전이 (s, a, s’)가 매우 놀랍다는”로 정정합니다.
  31. (p811) 주석 16번 끝에 다음 문장을 추가합니다. “텐서플로 2.4에서 GPU 메모리 사용량을 반환하는 tf.config.experimental.get_memory_usage() 함수가 추가되었습니다.”
  32. (p834) 첫 번째 문단 끝에 다음처럼 주석을 추가합니다. “… 훈련 코드를 실행합니다.<주석>옮긴이_MultiWorkerMirroredStrategy는 텐서플로 2.4에서 experimental을 벗어나 안정 API가 됩니다.</주석>” 또한 마지막 문단, 마지막 문장 끝에 다음처럼 주석을 추가합니다. “… 생성자에 전달하세요.<주석>옮긴이_ 텐서플로 2.4에서 CollectiveCommunication 클래스의 이름이 CommunicationImplementation로 바뀝니다.</주석>
  33. (p835) 두 번째 문단 끝에 다음처럼 주석을 추가합니다. “… 전략과 동일합니다).<주석>옮긴이_TPUStrategy는 텐서플로 2.3에서 experimental을 벗어나 안정 API가 되었습니다.</주석>
  34. (p849) 7번 문제 답의 마지막 항목에서 “\textbf{A}는 \textbf{A}'의 오른쪽에서 m \times n 단위 행렬 \textbf{I}_m이 추가되고 … 채워진 행렬입니다.”를 “\textbf{A}는 \textbf{A}'의 오른쪽에서 -\textbf{I}_m이 추가되고 … 채워진 행렬입니다(\textbf{I}_m은 m \times n단위 행렬).”로 정정합니다. 또한 바로 아래 A 행렬의 첫 번째 행 [\textbf{A}' \;\; \textbf{I}_m]을 [\textbf{A}' \,\, -\textbf{I}_m]으로 정정합니다.
  35. (p857) 6번 문제 답에서 2번째, 3번째 항목에 “가중치 벡터“를 “가중치 행렬“로 정정합니다.
  36. (p889) [식 C-4]의 우변의 두 항의 순서를 다음과 같이 바꿉니다.
    \sum_{i=1}^m \alpha^{(i)} - \dfrac{1}{2} \sum_{i=1}^m \sum_{j=1}^m \alpha^{(i)} \alpha^{(j)} t^{(i)} t^{(j)} \textbf{x}^{(i)^T} \textbf{x}^{(j)}
    그리고 [식 C-4] 아래 “여기서 \alpha^{(i)} \ge 0 \;\;\; i=1,2,\cdots,m 일 때”를 “여기서 \alpha^{(i)} \ge 0 \;\;\; i=1,2,\cdots,m 이고 \sum_{i=1}^m \alpha^{(i)} t^{(i)}=0 일 때”로 정정합니다.
    [식 C-4] 다음 문장에서 “이 함수를 최소화하고 … \hat{\alpha}^{(i)} \ge 0 벡터 …”를 “이 함수를 최대화하고 … \hat{\alpha}^{(i)} \ge 0이고 \sum_{i=1}^m \hat{\alpha}^{(i)} t^{(i)}=0 벡터 …”로 정정합니다.
    또한 [식 C-5] 아래에 “여기에서 n_s는 서포트 벡터의 개수입니다” 문장을 추가합니다.
  37. (p917) 첫 번째 문장 끝에 다음처럼 주석을 추가합니다. “… 그래프를 살펴보겠습니다.<주석>옮긴이_이 부록의 코드는 12장의 주피터 노트북에 포함되어 있습니다.</주석>”

사이킷런 0.24 맛보기!

사이킷런 0.24 버전이 연내에 나오지 않을까 조심스럽게 예측해 봅니다. 이번에도 많은 기능이 추가되고 여러 버그가 수정되었습니다(저도 PR 하나를 기여했습니다! :).

0.24버전에서 기대되는 두 가지 기능이 있다면 순차 특성 선택과 Successive Halving(SH) 방식의 그리드 서치입니다. 순차 특성 선택은 전진 선택법, 후진 선택법 등으로 R에서는 이미 예전부터 제공되는 기능입니다. 그동안 사이킷런에 없어서 조금 아쉬웠는데요. SequentialFeatureSelector 클래스에서 전진, 후진 모드를 모두 제공합니다. 또한 SH 방식의 그리드 서치를 위해 HalvingGridsearchCV 클래스와 HalvingRandomSearchCV 클래스가 추가 되었습니다.

0.24 버전이 나오기까지 이 두 클래스를 기다리기 어렵다면 미리 잠깐 맛보기는 것은 어떨까요? 머신 러닝 교과서 2판을 위해 만든 순차 특성 선택HalvingGridSearchCV 노트북을 참고하세요! 🙂