카테고리 보관물: Book

“혼자 공부하는 머신러닝+딥러닝”이 출간되었습니다!

혹시 머신러닝, 딥러닝을 이제 막 배우려고 마음 먹으셨나요? 또는 어려워서 중간에 포기하신 적이 있나요? 더이상 이 공부를 미룰 수 없는 “혼공족”을 위해 <혼자 공부하는 머신러닝+딥러닝>이 출간되었습니다! 🙂

머신러닝과 딥러닝의 중요한 개념과 예제를 많은 삽화와 함께 친절히 설명하는 책입니다. <혼자 공부하는 머신러닝+딥러닝>은 동영상 강의와 함께 합니다. 텐서 ≈ 스터디 페이스북 그룹에 오시면 <혼자 공부하는 머신러닝+딥러닝> 강의에 함께 참여하실 수 있습니다.

  • 강의 시간: 12월 22일부터 매주 화요일, 금요일 저녁 10시(공휴일과 겹치는 경우 다음 날로 변경, 예를 들어 12월 25일 스터디는 12월 26일 저녁 10시에 진행합니다)
  • 참여 대상: 머신러닝, 딥러닝을 공부하고 싶은 누구나.
  • 참여 방법: 페스타에서 이벤트 1시간 전에 줌 접속 URL 전달

풀 컬러, 580 페이지에 맛깔스런 삽화를 한 가득 준비했습니다. 지금 온라인/오프라인 서점에서 판매 중입니다! [교보문고] [Yes24] [알라딘] [한빛미디어] [전자책]

1장 1절과 2절의 영상입니다. 스터디는 1장 3절부터 시작합니다! 🙂

책에 넣기 위해 제가 손으로 직접 그린 혼공 머신러닝의 로드맵입니다. 당연히 책에는 풀컬러 그래픽으로 완전 멋지게 들어가 있습니다. ㅎ

감사합니다! 🙂

* 이 글에는 제휴마케팅이 포함된 링크가 있으며 일정 커미션을 지급 받을 수 있습니다.

“딥러닝 일러스트레이티드”가 출간되었습니다!

아마존 베스트 셀러인 <Deep Learning Illustrated>의 한글 번역서인 <딥러닝 일러스트레이티드>가 출간되었습니다. 딥러닝 역사에서 GAN과 강화 학습까지 이 분야의 흥미진진한 기술을 가득담고 있습니다. 저자들의 직관적이고 명쾌한 설명으로 딥러닝의 진수를 맛볼 수 있습니다. 특히 파리지엔느인 아그레이가 그린 이 분야 거장들의 멋진 일러스트를 책 미리보기에서 지금 확인해 보세요!

깃허브에 있는 모든 코드는 구글 코랩(Colab)에서 실행할 수 있습니다! 삼엽충과 함께 딥러닝의 세계로 떠나보시죠! 🙂

  • 432페이지 완전 풀컬러
  • 지금 온라인 서점에서 판매중입니다. [교보문고]: 32,400원, [Yes24] [알라딘]: 36,000원

친절하게도 저자 존 크론이 링크드인에서 직접 번역서를 소개해 주었습니다. 🙂

* 이 글에는 제휴마케팅이 포함된 링크가 있으며 일정 커미션을 지급 받을 수 있습니다.

“Do It! 딥러닝 입문” 동영상 강의 완결!

지난 5월부터 만들기 시작한 <Do It! 딥러닝 입문>의 동영상 강의를 모두 완결했습니다(유튜브 플레이리스트). 대단한 컨텐츠도 아닌데 짬짬이 시간을 내기가 쉽지 않았던 것 같습니다. 모쪼록 혼자 책을 보시기 어려울 때 도움이 되었으면 좋겠습니다! 🙂

이번에 출간한 <혼자 공부하는 머신러닝+딥러닝>은 초반부터 바짝 스터디를 진행해서 동영상 컨텐츠를 만들어 올릴 생각입니다. 두 책이 어떻게 다른지 궁금하신 분이 많은 것 같습니다. 제가 쓰거나 번역한 책을 비교해 보려면 “어떤 책을 봐야 하나요?” 페이지를 참고해 주세요. 한 눈에 전체 책을 조망해 볼 수 있도록 재미난 그림을 그려보았습니다. ㅎㅎ 즐거운 한 주간 되세요!

“핸즈온 머신러닝 2” 교보문고 2020 올해의 책 선정!

교보문고에서 진행한 “2020 올해의 책 IT 전문서” 투표에서 머신러닝/딥러닝 부분에서 “핸즈온 머신러닝 2“가 선정되었습니다. 정말 큰 영광입니다. 긴 시간 함께 노력해준 한빛미디어 윤나리 님께도 감사드립니다. 이 책을 좋아해 주고 투표에 참여해 주신 모든 독자 분들께 감사드립니다. 책은 늘 오타가 있습니다. 오류를 찾아 알려 주신 독자분들께 정말 깊이 감사드립니다. Yes24 “2020 IT 연말결산“에서도 2020 베스트 IT 전문서에 “핸즈온 머신러닝 2“가 선정되었습니다!

[독서 후기] 은밀한 설계자들

이 책의 원제는 ‘Coders’입니다. 프로그래머에 대해 이야기하는 책이죠. 그런 면에서 ‘은밀한 설계자들’이란 제목은 조금 어색해 보였습니다. 왠지 프로그래머를 부정적으로 바라보는 것 같거든요. 책을 읽어 가면서 번역서의 제목을 왜 이렇게 붙였는지 조금은 이해되었습니다. 이 책의 전반부는 어디선가 읽어 보았음직한 익숙한 패턴을 따릅니다. 오래된 프로그래머의 전설적인 경험담이나 성공한 창업가의 이야기입니다. 책 후반부에 성별과 인종에 따른 편견을 꼬집고 있지만 앞부분은 오히려 프로그래머는 어떤거야라는 편견을 독자에게 주입하고 있는 듯한 모순이 있습니다.

책의 이야기는 조금씩 프로그래머 개인의 특질에서 공동체가 해결해야할 문제로 화두를 옮깁니다. 여성 개발자에 대한 편견을 정면으로 다룬 것은 특히 그렇습니다. 초기 프로그래머는 진짜 여성들이었습니다. 영화 히든 피겨스도 다시 생각이 났습니다. 머신러닝 분야도 다양성이란 측면에서 자유롭지 못한 것 같습니다. 백인 남성이 주류가 된 소프트웨어 시장의 문제를 보면서 우리도 학력과 성별에 어떤 편견을 가지고 있는지 돌아 볼 필요가 있습니다.

인공지능을 다루는 장에서 전통적인 프로그래머와 인공지능 프로그래머의 차이를 비교적 잘 설명하고 있습니다. 또 인공지능이 저지르는 편견은 결국 사람의 편견에서 시작된다는 것을 이해하도록 돕고 있습니다. 이런 편견은 현실은 반영하기 때문에 정당한 것일까요? 아니면 의도적으로 고쳐야 할까요? 설명 가능한 인공지능에 대해서도 고민할 것이 많은 것 같습니다. 페이스북과 구글과 같은 빅테크에 저항감을 느끼는 것은 남의 이야기가 아닙니다. 조금 더 사용자들을 붙잡아 두기 위해 게임과 웹툰, 광고에 쏟아 붓는 프로그래머들의 노력과 창의성을 자랑스러워할 수 있을까요?

이 책의 전반부는 프로그래머가 되고 싶은 분과 이들과 함께 일하는 분들이 읽어 보면 좋습니다. 후반부는 이미 프로그래머이거나 인공지능 개발자가 되고 싶은 분에게 권하고 싶습니다. 특히 7장, 9장은 읽어 둘 가치가 있습니다. 잠시 시간을 내면 서점에 가서 금방 읽을 수 있습니다. 🙂

핸즈온 머신러닝 2판의 변경 부분

핸즈온 머신러닝 2판의 주요 목표 6개는 다음과 같습니다:

  1. 추가적인 ML 주제를 다룹니다: 비지도 학습 기법(군집, 이상치 탐지, 밀도 추정, 혼합 모델), 심층 신경망 훈련 방법(자기 정규화 신경망), 컴퓨터 비전 기법(Xception, SENet, YOLO를 사용한 객체 탐지, R-CNN을 사용한 시맨틱 분할), CNN으로 시퀀스 다루기(WaveNet), RNN/CNN/트랜스포머를 사용한 자연어 처리, 생성적 적대 신경망.
  2. 추가적인 라이브러리와 API를 다룹니다: 케라스, 데이터 API, 강화 학습을 위한 TF-Agents, 분산 전략 API를 사용한 대규모 TF 모델 훈련과 배포, TF 서빙, 구글 클라우드 AI 플랫폼.
  3. 최근 딥러닝 연구 중에서 중요한 결과를 담습니다.
  4. 모든 텐서플로 관련 장을 텐서플로 2로 업그레이드하고 코드를 간소화하기 위해 가능하면 케라스 API(tf.keras)를 사용해 텐서플로 모델을 구현합니다.
  5. 사이킷런, 넘파이, 판다스, 맷플롯립 등의 최신 라이브러리에 맞춰 예제 코드를 업데이트합니다.
  6. 일부 섹션을 명확하게 바꾸고 에러를 고칩니다.

추가된 장과 새로 쓰거나 재배치된 장이 있습니다. 다음 표는 1판과 2판의 장 사이에 연관성을 보여줍니다:

1판의 장 2판의 장 변경량(%) 2판의 제목
1 1 <10% 한눈에 보는 머신러닝
2 2 <10% 머신러닝 프로젝트 처음부터 끝까지
3 3 <10% 분류
4 4 <10% 모델 훈련
5 5 <10% 서포트 벡터 머신
6 6 <10% 결정 트리
7 7 <10% 앙상블 학습과 랜덤 포레스트
8 8 <10% 차원 축소
N/A 9 100% 추가 비지도 학습
10 10 ~75% 케라스를 사용한 인공 신경망 소개
11 11 ~50% 심층 신경망 훈련하기
9 12 100% 재작성 텐서플로를 사용한 사용자 정의 모델과 훈련
12장 일부 13 100% 재작성 텐서플로에서 데이터 적재와 전처리하기
13 14 ~50% 합성곱 신경망을 사용한 컴퓨터 비전
14장 일부 15 ~75% RNN과 CNN을 사용해 시퀀스 처리하기
14장 일부 16 ~90% RNN과 어텐션을 사용한 자연어 처리
15 17 ~75% 오토인코더와 GAN을 사용한 표현 학습과 생성적 학습
16 18 ~75% 강화 학습
12장 일부 19 ~75% 추가 대규모 텐서플로 모델 훈련과 배포

조금 더 구체적인 2판의 주요 변경 사항은 다음과 같습니다(설명 보완, 오류 수정, 코드 업데이트는 제외합니다):

  • 1장 – 한눈에 보는 머신러닝
    • ML 애플리케이션 사례와 알고리즘 추가
    • 훈련 세트와 검증 세트/테스트 세트가 다를 때 처리 방법 추가
  • 2장 – 머신러닝 프로젝트 처음부터 끝까지
    • 신뢰 구간 계산 방법 추가
    • 설치 안내 보강 (예를 들어, 윈도우 환경)
    • 업그레이드된 OneHotEncoder와 새로운 ColumnTransformer 소개
    • 배포, 모니터링, 유지보수에 관한 상세 내용 추가
  • 4장 – 모델 훈련
    • 훈련 샘플이 IID를 만족해야 하는 필요성 설명
  • 7장 – 앙상블 학습과 랜덤 포레스트
    • XGBoost 절 추가
  • 9장 – 비지도 학습 (새로운 장)
    • K-평균을 사용한 군집, 클러스터 수를 선택하는 방법, 차원 축소 용도로 사용하는 방법, 준지도 학습, 이미지 분할 등
    • DBSCAN 군집 알고리즘과 사이킷런에 있는 다른 군집 알고리즘 소개
    • 가우시안 혼합 모델, EM 알고리즘, 베이지안 변분 추론, 혼합 모델을 군집, 밀도 추정, 이상치 탐지, 특이치 탐지에 사용하는 방법
    • 다른 이상치 탐지와 특이치 탐지 알고리즘 소개
  • 10장 – 케라스를 사용한 인공 신경망 소개 (거의 다시 씀)
    • 케라스 (시퀀셜, 함수형, 서브클래싱) API 소개, 모델 저장, (TensorBoard 콜백을 포함한)콜백 추가
  • 11장 – 심층 신경망 훈련하기 (변경 사항 많음)
    • 자기 정규화 신경망, SELU 활성화 함수, 알파 드롭아웃 소개
    • 자기 지도 학습 소개
    • Nadam 최적화 추가
    • 몬테 카를로 드롭아웃 추가
    • 적응적 최적화 방법의 위험에 관한 노트 추가
    • 실용적 가이드라인 업데이트
  • 12장 – 텐서플로를 사용한 사용자 정의 모델과 훈련 (완전히 재작성)
    • 텐서플로 2 소개
    • 텐서플로의 저수준 파이썬 API
    • 사용자 정의 손실 함수, 지표, 층, 모델 작성하기
    • 자동 미분을 사용하여 사용자 정의 훈련 알고리즘 만들기
    • 텐서플로 함수와 그래프 (트레이싱과 오토그래프 포함)
  • 13장 – 텐서플로에서 데이터 적재와 전처리하기 (새로운 장)
    • 데이터 API
    • TFRecord를 사용하여 효율적으로 데이터 적재/저장
    • 사용자 정의 전처리 층 작성, 케라스 전처리 층 사용, 원-핫 벡터/BoW/TF-IDF/임베딩을 사용해 범주형 특성과 텍스트 인코딩
    • TF 변환과 TF 데이터셋 소개
    • 저수준 신경망 구현을 연습문제로 이동
    • 데이터 API로 대체된 큐와 리더 내용을 삭제
  • 14장 – 합성곱 신경망을 사용한 컴퓨터 비전
    • Xception과 SENet 구조 추가
    • ResNet-34의 케라스 구현 추가
    • 케라스로 사전 훈련된 모델 사용하는 방법
    • 엔드-투-엔드 전이 학습 예제 추가
    • 분류와 위치 추정(localization) 추가
    • 완전 합성곱 신경망(FCN) 소개
    • YOLO 구조를 사용한 객체 탐지 소개
    • R-CNN을 사용한 시맨틱 분할 소개
  • 15장 – RNN과 CNN을 사용해 시퀀스 처리하기
    • Wavenet 소개 추가
    • 인코더-디코더 구조와 양방향 RNN을 16장으로 이동
  • 16장 – RNN과 어텐션을 사용한 자연어 처리 (새로운 장)
    • 시퀀셜 데이터를 다루기 위해 데이터 API 사용하는 방법 설명
    • 상태가 있는 경우와 상태가 없는 Char-RNN을 사용한 엔드-투-엔트 텍스트 생성 예제
    • LSTM을 사용한 엔드-투-엔드 감성 분석 예제
    • 케라스 마스킹 설명
    • TF 허브를 사용해 사전 훈련된 임베딩 재사용하는 방법
    • 텐서플로 애드온의 seq2seq를 사용해 신경망 기계 번역을 위한 인코더-디코더 만드는 방법
    • 빔 검색 소개
    • 어텐션 메커니즘 소개
    • 비주얼 어텐션에 대한 간단한 소개와 설명 가능성에 대한 노트 추가
    • 위치 임베딩과 멀티-헤드 어텐션을 포함한 완전한 어텐션 기반 트랜스포머 구조 소개
    • 최신 언어 모델에 대한 소개 추가 (2018년)
  • 17장 – 오토인코더와 GAN을 사용한 표현 학습과 생성적 학습
    • 합성곱 오토인코더와 순환 오토인코더 추가
    • 기본 GAN, 심층 합성곱 GAN(DCGAN), ProGAN, StyleGAN을 포함한 생성적 적대 신경망(GAN) 추가
  • 18장 – 강화 학습
    • 더블 DQN, 듀얼링 DQN, 우선 순위 기반 경험 재생
    • TF Agents 소개
  • 19장 – 대규모 텐서플로 모델 훈련과 배포 (거의 다시 씀)
    • TF 서빙과 구글 클라우드 AI 플랫폼을 사용한 텐서플로 모델 서빙
    • TFLite를 사용하여 모바일이나 임베디드 장치에 모델 배포하기
    • GPU를 사용하여 계산 속도를 높이기
    • 분산 전략 API를 사용해 여러 장치에서 모델 훈련하기

‘미술관에 GAN 딥러닝’이 출간되었습니다!

x9791162241080

데이비드 포스터David Foster가 쓴 아마존 베스트셀러 ‘Generative Deep Learning’를 번역한 ‘미술관에 GAN 딥러닝‘이 출간되었습니다.

이 책은 생성 모델링 분야에서 주목받는 최신 딥러닝 기술을 소개합니다. 이 책에 담긴 예제를 만들어 보면서 작동 원리를 터득할 수 있습니다. 특히 짧은 우화를 사용하여 어렵게 느껴질 수 있는 알고리즘을 쉽고 재미있게 설명해 줍니다. 저자의 스토리텔링 기술이 정말 탁월합니다.

이 책이 다루고 있는 모델은 오토인코더, 변이형 오토인코더, DCGAN, WGAN, WGAN-GP, Cycle GAN, Neural Style Transfer, LSTM, Encode-Decoder 모델, 질문-대답 생성기, MuseGAN, World Model, Transformer 등입니다. 이 책과 함께 흥미로운 생성 모델의 세계로 탐험을 떠나 보시죠! 🙂

온라인/오프라인 서점에서 판매중입니다! [교보문고] [Yes24]

감사합니다!!!

“Do it! 딥러닝”이 출간되었습니다.

x9791163031093Do it! 딥러닝 입문“이 출간되었습니다! 이 책은 번역서가 아니라 제가 직접 쓴 책입니다! 🙂

알고리즘 공식을 유도하고 직접 파이썬으로 구현해 보면서 딥러닝에 숨겨진 실체를 흥미진진하게 파헤칩니다. 또 텐서플로를 사용해 실전 딥러닝 구현 감각을 익히도록 돕습니다. 좋은 출판사의 도움을 받아 훌륭한 일러스트와 알찬 내용으로 꾸몄습니다. 딥러닝을 어떻게 시작할지 막막하다면 이 책을 자신있게 권해드립니다.

온라인/오프라인 서점에서 판매중입니다. [교보문고] [Yes24] [전자책]

감사합니다!!! 🙂

  • 코로나 때문에 스터디를 진행하지 못하는 대신 유튜브에 강의를 올렸습니다! 재미있게 봐 주세요. 🙂
  • 이 영상은 구름 에듀에서도 볼 수 있습니다.

* 이 글에는 제휴마케팅이 포함된 링크가 있으며 일정 커미션을 지급 받을 수 있습니다.

“파이썬을 활용한 머신러닝 쿡북”이 출간되었습니다!

x9791162241950크리스 알본의 ‘Machine Learning with Python Cookbook’을 번역한 <파이썬을 활용한 머신러닝 쿡북>이 출간되었습니다. 200개의 레시피에 머신러닝 작업에 필요한 핵심을 잘 담아 놓았습니다.

508페이지 로 뽑아 주신 한빛미디어 출판사에 감사드립니다. 온라인/오프라인 서점(교보문고, Yes24)에서 판매 중입니다. 절판되기 전에 어서 주문하세요! 🙂

“[개정판] 파이썬 라이브러리를 활용한 머신러닝”이 출간되었습니다!

x9791162241646안드레아스 뮐러Andreas Mueller와 세라 가이도Sarah Guido의 베스트 셀러 “Introduction to Machine Learning with Python“의 번역서인 “파이썬 라이브러리를 활용한 머신러닝“이 개정판으로 새롭게 출간되었습니다!

지난해 10월 원서 저자들이 최신 사이킷런 버전에서 추가된 내용을 반영하여 새롭게 원서를 릴리스했습니다. 원서에서 바뀐 부분을 번역서에 반영하기에는 변경사항이 너무 많아 난처했습니다.

다행히 출판사와 협의하여 새롭게 개정판을 준비할 수 있었습니다. 그동안 많은 독자들에게 사랑을 받았던 책이라 개정판은 특별히 컬러 인쇄가 되었습니다! 여러가지 배려를 아끼지 않은 한빛미디어에 감사드립니다. 시원한 컬러 그래프를 볼 생각을 하니 너무 기쁘네요. 🙂

개정판에 추가, 변경된 내용은 [개정판] 파이썬 라이브러리를 활용한 머신러닝 페이지를 참고하세요. 이 책은 YES24, 교보문고와 같은 온라인 서점과 오프라인 서점에서 판매 중입니다!