카테고리 보관물: News

“핸즈온 머신러닝 2″의 넘파이, 맷플롯립, 판다스 튜토리얼

<핸즈온 머신러닝 2>의 깃허브에서 제공하는 넘파이(tools_numpy.ipynb), 맷플롯립(tools_matplotlib.ipynb), 판다스 튜토리얼(tools_pandas.ipynb) 번역을 모두 마쳤습니다! 🙂

이 노트북은 깃허브에서 볼 수 있고 주피터 노트북 뷰어에서 볼 수 있습니다. 특히 ml-ko 사이트에서는 html로 빠르게 코드와 결과를 볼 수 있습니다. 노트북에 코랩 링크도 포함되어 있으니 시간날 때 언제든지 따라해 보세요!

TF Python 3.5 support drop, TF Java release

Python 3.5 버전의 지원이 2020년 9월에 종료됨에 따라 파이썬 3.5용 텐서플로도 10월부터 지원이 중지됩니다. 2020년 10월 13일부터 나이틀리(nightly) 패키지가 만들어지지 않고 향후 TF 릴리스에도 파이썬 3.5 버전은 더 이상 포함되지 않습니다. 현재 텐서플로는 파이썬 3.5, 3.6, 3.7, 3.8을 지원하고 있습니다.

텐서플로 Java 0.2.0 버전이 릴리스되었습니다. 이는 첫 번째 알파 버전으로 텐서플로 2.3.1 버전을 기반으로 구성되었습니다. 자바 사용자들에게는 기쁜 소식입니다. 하지만 자바 버전이 왜 필요한지 의문을 다는 사람도 있네요. 🙂

“GAN 인 액션”이 출간되었습니다.

GAN 인 액션“이 출간되었습니다! 284페이지 완전 컬러입니다! 🙂

이 책은 야쿠프 란그르와 블라디미르 보크의 아마존 베스트셀러인 <GANs In Action>의 번역서입니다.(아마존매닝)

좋은 책을 믿고 맡겨 주신 한빛미디어와 윤나리 편집자님께 감사드립니다. 무엇보다도 이 책을 기다려 주신 독자분들께 감사드립니다. 책을 읽는 내내 즐거운 여행이 되셨으면 좋겠습니다! 온라인/오프라인 서점에서 판매중입니다. Yes24알라딘, 교보문고한빛미디어

“케라스 창시자에게 배우는 딥러닝” 코드 TensorFlow 2 업데이트 안내

늦은 감이 있지만 <케라스 창시자에게 배우는 딥러닝> 책의 주피터 노트북을 텐서플로 2 기반으로 변경한 버전을 깃허브의 tf2 브랜치에 올렸습니다. 아쉽게도 몇 개의 노트북은 텐서플로 2와 호환되지 않아 부득이하게 tf.compat.v1.disable_v2_behavior() 를 사용했습니다.

텐서플로 2에 포함된 케라스 API를 사용하시는 경우에 조금 도움이 되셨으면 좋겠네요. 감사합니다! 🙂

DL for CV & Tiny ML 강의

흥미로운 두 개의 강의를 소개해 드립니다.

스탠포드에서 cs231n Convolutional Neural Networks for Visual Recognition을 진행했던 Justin Johnson이 미시간 대학교로 옮겼군요. 미시간 대학에서 진행하는 강의는 Deep Learning for Computer Vision입니다. 지난해 가을 강의가 유투브에 모두 올라왔습니다. 최신 기술들도 많이 추가했다고 하니 이전에 cs231n을 들었더라도 리프레시하는 겸 들어보면 좋을 것 같네요. 삽엽충으로 시작하는 페이페이 리 교수의 슬라이드보다 시작부분이 좋습니다. 딥러닝 역사를 두 개의 타임라인으로 나란히 놓고 설명하는게 좋네요.

edx.org에서 HarvardX와 함께 Tiny ML 과정을 가을에 연다고 합니다(https://programs.edx.org/harvard-tiny-ml). 올 가을에 개강한다고 하니 관심이 있다면 메일링 리스트에 등록하는 것도 좋습니다. 임베디드 장치를 위한 머신러닝 강좌로 직접 아두이노를 활용하여 강의를 진행할 것으로 보입니다. 아마도 텐서플로 Lite를 사용하리라 생각됩니다! 🙂

[핸즈온 머신러닝 2판], [Do It! 딥러닝 입문], [파이썬을 활용한 머신러닝 쿡북], [머신러닝 교과서] 텐서플로 2.3.0 업데이트 안내

핸즈온 머신러닝 2판, Do It! 딥러닝 입문, 파이썬을 활용한 머신러닝 쿡북, 머신러닝 교과서의 깃허브 코드를 텐서플로 2.3.0에 맞추어 업데이트했습니다.

핸즈온 머신러닝 2판의 18장은 최신 tf-agents가 텐서플로 2.3.0과 호환되지 않아 업데이트되지 못했습니다.

TensorFlow 2.3.0 Release

텐서플로 2.3.0 버전이 릴리스되었습니다.

TPUStrategy가 experimental을 벗고 정식 API가 되었습니다. TF Porfiler에 새로운 기능이 추가되었습니다. image_dataset_from_directory, text_dataset_from_directory, timeseries_dataset_from_array를 비롯해 여러 개의 케라스 전처리 층이 추가 되었습니다. 자세한 내용은 릴리스 노트를 참고하세요.

텐서플로 2.3.0은 다음 명령으로 설치할 수 있습니다.

# for cpu and gpu
$ pip install --upgrade tensorflow
# cpu-only
$ pip install --upgrade tensorflow-cpu

케라스 2.4.0 버전이 릴리스되었습니다.

케라스 2.4.0 버전이 릴리스되었습니다. 이전에 언급된 대로 keras-team/keras 레파지토리는 더이상 멀티 백엔드를 지원하지 않습니다. 2.4.0 버전은 기존 구현 코드를 모두 삭제하고 대신 tensorflow.keras로 리다이렉션합니다. 향후에는 tensorflow.keras 구현이 keras-team/keras로 옮겨올 것 같습니다.

제가 번역한 책 중에 케라스 멀티 백엔드 케라스 버전을 사용하는 책은 <케라스 창시자에게 배우는 딥러닝>과 <미술관에 GAN 딥러닝>입니다. 케라스를 최신 버전으로 업데이트하면 코드 결과가 크게 달라질 수 있습니다. 대신 케라스 2.2.4 버전을 사용하세요.

$ pip install keras==2.2.4

감사합니다!

“[개정판] 파이썬 라이브러리를 활용한 머신러닝” 사이킷런 0.23 업데이트

[개정판] 파이썬 라이브러리를 활용한 머신러닝“의 코드를 사이킷런 0.23에서 모두 테스트했습니다. 깃허브 코드에도 변경 사항이 모두 반영되었습니다. 자세한 변경 내용은 에러타 페이지나 아래 내용을 참고해 주세요.

감사합니다!

  1. 모델을 훈련할 때 반복 횟수를 늘리라는 경고가 출력되는 것을 막기 위해 max_iter 매개변수 값을 늘립니다.
    1. p87의 In[41], p137의 In[80]: LinearSVC에 max_iter=5000 매개변수 추가
    2. p135의 In[78]: LinearSVC에 max_iter=5000, tol=1e-3 매개변수 추가
    3. p89의 In[43], p90의 In[44]와 In[45], p306의 In[51], p308의 In[55], p310의 In[57], p424의 In[18], p426의 In[22], p428의 In[25], p430의 In[29], p436의 In[39], p442의 In[47]: LogisticRegression에 max_iter=5000 매개변수 추가
    4. p92의 In[47], p278의 In[8], p284의 In[17], p325의 In[5], p336의 In[2], p360의 In[46], p404의 In[23], p424의 In[17]: LogisticRegression에 max_iter=1000 매개변수 추가
    5. p151의 In[95], p152의 In[97]: MLPClassifier에 max_iter=1000 매개변수 추가
    6. p156의 In[102]: MLPClassifier에 max_iter=2000 매개변수 추가
    7. p215의 In[38], p218의 In[42], p234의 In[59]: NMF에 max_iter=1000, tol=1e-2 매개변수 추가
  2. (p156) Out[102] 아래에 출력된 ConversionWarning 메시지 삭제
  3. 사이키런 0.21 버전에서 사분위수보다 샘플 개수가 작을 때 적절히 처리하지 못하는 버그가 수정되었습니다. 샘플 개수가 1,000개보다 작을 때 경고 메시지를 출력하지 않기 위해 QuantileTransformer 클래스에 n_quantiles 매개변수를 지정합니다.
    1. p183의 In[4], p185의 In[9], p186의 In[10]: QuantileTransformer에 n_quantiles=50 매개변수 추가
    2. p185의 In[8]: QuantileTransformer에 n_quantiles=5 매개변수 추가
  4. (p360) 사이킷런 0.24 버전에서 DummyClassifier의 strategy 매개변수 기본값이 stratified에서 prior로 변경된다는 경고를 피하기 위해 strategy='stratified' 매개변수를 추가합니다.
  5. (p388) metrics.scorer 모듈이 사이킷런 0.24 버전에서 삭제됩니다. 맨 위 첫 줄의 “metrics.scorer 모듈의 SCORERS 딕셔너리를 봐도 됩니다” 문장과 In[77], Out[77]을 삭제합니다.