분류기 체인: ClassifierChain

Scikit-Learn 0.19 버전에 추가된 기능으로 이번에 소개할 모델은 ClassifierChain입니다.

다중 레이블(Multi-Label) 문제를 직접 다룰 수 있는 모델도 있지만(가령, 랜덤 포레스트), 이진 분류기를 사용하여 다중 레이블 분류기를 구현하는 간단한 방법은 One-Vs-All 방식을 사용하는 것입니다. 이 예에서 사용할 데이터는 Yeast 데이터셋으로 2,417개의 샘플과 103개의 특성, 14개의 타깃 레이블(즉, 다중 레이블)을 가지고 있습니다.

import numpy as np
from sklearn.datasets import fetch_mldata

yeast = fetch_mldata('yeast')

X = yeast['data']
Y = yeast['target']

Y = Y.transpose().toarray()

X와 행의 차원을 맞추기 위해 희소 행렬 Y를 전치하고 밀집 행렬로 변환합니다. 그러면 X는 (2417×103)인 행렬이고 Y는 (2417×14)인 행렬이 됩니다. 그 다음 훈련 데이터와 테스트 데이터로 나눕니다.

from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, 
                                                    random_state=42)

먼저 로지스틱 회귀을 사용해 OneVsRestClassifier 모델을 훈련시켜 보겠습니다.

from sklearn.linear_model import LogisticRegression
from sklearn.multiclass import OneVsRestClassifier

ovr = OneVsRestClassifier(LogisticRegression())
ovr.fit(X_train, Y_train)
pred_ovr = ovr.predict(X_test)

OneVsRestClassifier는 타깃 레이블의 개수 만큼 로지스틱 회귀 모델을 만들어 각 레이블을 타깃으로 하는 분류기를 학습시킵니다. 따라서 pred_ovr의 차원은 (2417×14)이 됩니다. 다중 레이블 분류에 사용되는 대표적인 측정 방법은 자카드 유사도(jaccard_similarity_score)입니다. 이 함수에 진짜 타깃 레이블과 예측 결과를 전달하면 0~1 사이의 값을 반환합니다. 1에 가까울수록 두 값이 비슷한 것입니다.

from sklearn.metrics import jaccard_similarity_score
ovr_score = jaccard_similarity_score(Y_test, pred_ovr)
ovr_score
0.50828086055358779

이번에는 ClassifierChain을 사용해 보겠습니다. 이 (메타) 분류기는 OneVsRestClassifier처럼 레이블마다 하나의 모델을 학습시키지만 타깃 레이블을 특성으로 사용합니다. 다중 레이블의 문제에서 종종 타깃은 서로에게 상관관계를 가집니다. 이런 경우 분류기 체인 방식을 사용하면 One-Vs-All 전략 보다 더 좋은 결과를 얻을 수 있습니다.

ClassifierChain은 먼저 첫 번째 레이블에 대해 이진 분류기를 학습시킵니다. 그 다음 두 번째 분류기를 학습시킬 때 첫 번째 레이블을 특성으로 포함시킵니다. 그 다음엔 첫 번째와 두 번째 레이블을 특성으로 포함시켜 세 번째 분류기를 학습시키는 식입니다. 이렇다 보니 레이블의 순서에 따라 결과가 달라질 수 있습니다. ClassifierChain의 order 매개변수 기본값은 Y 타깃값을 순서대로 사용하므로 이보다는 ‘random’으로 주는 것이 일반적입니다.

from sklearn.multioutput import ClassifierChain

cc = ClassifierChain(LogisticRegression(), order='random', random_state=42)
cc.fit(X_train, Y_train)
pred_cc = cc.predict(X_test)
cc_score = jaccard_similarity_score(Y_test, pred_cc)
cc_score
0.52203774760592925

예측을 만들 때는 체인 순서대로 첫 번째 분류기의 예측을 만들어 다음 분류기에서 특성으로 사용하고, 두 번째 분류기의 예측을 만들어 첫 번째 예측 결과와 함께 세 번째 분류기의 특성으로 사용하는 식으로 진행됩니다.

이번에는 random_state를 바꾸어 가면서 여러개의 ClassifierChain을 만들어 order=’random’일 때 미치는 영향을 살펴 보겠습니다. 다음 코드는 리스트 내포(list comprehension)를 사용하여 random_state 값을 바꾸면서 10개의 ClassifierChain을 만들고 자카드 점수를 계산하지만 기본적으로 위의 코드와 동일합니다.

chains = [ClassifierChain(LogisticRegression(), order='random', random_state=42+i)
          for i in range(10)]
for chain in chains:
    chain.fit(X_train, Y_train)

pred_chains = np.array([chain.predict(X_test) for chain in chains])
chain_scores = [jaccard_similarity_score(Y_test, pred_chain)
                    for pred_chain in pred_chains]
[0.52203774760592925,
 0.50759953430407978,
 0.54071149809786168,
 0.51879427390791022,
 0.51900088547815826,
 0.51148445792040831,
 0.52014626787354057,
 0.50362964056145876,
 0.50333366128820667,
 0.47443673750491933]

확실히 random_state에 따라 타깃값을 사용하는 순서가 바뀌기 때문에 성능이 들쭉 날쭉합니다. 다음 그래프에서 첫 번째 막대 그래프는 ovr_score이고 그 다음 10개의 그래프는 chain_scores입니다.

jaccard_bar1

어떤 순서로 레이블을 사용할지 사전에 알 수 없으므로 ClassifierChain의 앙상블을 만들어 사용하는 것이 좋습니다. 앙상블을 만들 때는 각 분류기 체인의 값을 평균내어 사용합니다. 분류기 체인의 예측 결과를 앙상블하는 것보다 예측 확률을 앙상블하는 것이 조금 더 안정적인 결과를 제공할 것으로 기대할 수 있습니다. 로지스틱 회귀는 predict_proba() 메서드를 제공하므로 간단하게 체인의 확률값을 얻을 수 있습니다. 앙상블의 평균을 낸 후에 이를 예측값으로 바꾸어 Y_test와 유사도를 측정하려면 앙상블의 평균 확률이 0.5 보다 큰지를 판단하면 됩니다.

proba_chains = np.array([chain.predict_proba(X_test) for chain in chains])
proba_ensemble = proba_chains.mean(axis=0)
ensemble_score = jaccard_similarity_score(Y_test, proba_ensemble >= 0.5)
0.51958792470156101

앙상블의 결과는 0.5196로 첫 번째 체인보다는 점수가 낮지만 가장 나쁜 체인의 점수에 비하면 비교적 높은 점수를 얻었습니다. 또 OneVsRestClassifier 보다 높은 점수를 얻었습니다. 다음 그래프의 첫 번째 막대 그래프는 ovr_score이고 그 다음 10개의 그래프는 chain_scores이며 마지막 막대 그래프가 앙상블의 결과입니다.

jaccard_bar2

이 글의 샘플 코드는 ‘파이썬 라이브러리를 활용한 머신러닝‘ 깃허브(https://github.com/rickiepark/introduction_to_ml_with_python/blob/master/ClassifierChain.ipynb)에서 확인할 수 있습니다.

PyTorch 0.3.1 Release

파이토치PyTorch 0.3.1 버전이 릴리즈되었습니다. 주로 버그 수정과 성능 향상을 포함하고 있습니다. 자세한 변경사항은 릴리즈 노트를 참고하세요.

파이토치 0.3.1 부터는 CUDA 3.0, 5.0과의 호환성이 삭제되었고, CUDA 7.5를 위한 바이너리 설치가 제외되었습니다. 대신 CUDA 8, 9, 9.1용 바이너리 설치가 제공됩니다. 지원하는 파이썬 버전은 2.7, 3.5, 3.6 입니다.

# macOS (no GPU)
$ conda install pytorch torchvision -c pytorch

# Linux CUDA 8.0
$ conda install pytorch torchvision -c pytorch
# Linux CUDA 9.0
$ conda install pytorch torchvision cuda90 -c pytorch
# Linux CUDA 9.1
$ conda install pytorch torchvision cuda91 -c pytorch
# Linux CPU
$ conda install pytorch-cpu torchvision -c pytorch

지난 달 말에는 마이크로소프트의 CNTK 2.4 버전이 릴리즈 되었습니다. 자세한 사항은 릴리즈 노트를 참고하세요.

TensorFlow 1.6.0 RC0 Release

텐서플로 1.6.0 RC0 버전이 릴리즈되었습니다. 1.5.0 버전이 나온지 채 한달도 되지 않았는데 잉크가 마르기전이라는 말이 실감이 나네요. 이번 버전에는 이전에 예고한 대로 CPU 사용자들을 위한 AVX 명령이 활성화되어 바이너리가 제공됩니다. CUDA 9.0에 대한 버그 안내도 있네요. 조금 더 자세한 내용은 릴리즈 노트를 참고해 주세요. 1.6.0 RC0 버전은 다음과 같이 pip 명령으로 설치할 수 있습니다.

$ pip install --upgrade --pre tensorflow
$ pip install --upgrade --pre tensorflow-gpu

(업데이트) 텐서플로 1.6.0 RC1 버전이 릴리즈되었습니다.

TensorFlow 1.5.0 Release

텐서플로 1.5.0 버전이 릴리즈되었습니다. RC 버전에서 소개되었던 것처럼 Eager execution과 TensorFlow Lite의 프리뷰 버전이 포함되어 있습니다. 구글 개발자 블로그에서 텐서플로 1.5에 추가된 기능에 대해 조금 더 자세히 소개하고 있습니다. 여기에는 Eager execution의 가이드 문서와 TensorFlow Lite의 코드랩 TFlite 튜토리얼이 소개되어 있습니다.

텐서플로 1.5.0 부터는 CUDA 9, cuDNN 7에서 컴파일된 PyPI 패키지가 제공됩니다. pip를 사용해 설치하려면 두 라이브러리를 업데이트해 주어야 합니다. 텐서플로 1.5.0의 설치 가이드는 다음 포스트도 참고하세요. 그리고 glibc 버전 2.23에서 컴파일 되기 때문에 현재 리눅스의 glibc 버전이 낮다면 업그레이드해 주어야 합니다.

$ pip install --upgrade tensorflow
$ pip install --upgrade tensorflow-gpu

(업데이트) cuBLAS 패치 버전(9.1)과 cuDNN 7.0.5에서도 1.5.0 버전을 설치할 수 있습니다.

(업데이트) 텐서플로 로드맵 페이지에서 앞으로의 개발 방향을 살짝 엿볼 수 있는데요. 눈에 띄이는 것들이 여러개 있는 것 같습니다. C++, Java 등의 언어지원, 고수준 API(케라스로 부족한 걸까요?), 자동 배치 알고리즘(!!!), OpenCL 지원(!!!!) 등이 입맛을 당기네요. 🙂

AWS 스팟 인스턴스 + Deep Learning AMI

AWS의 EC2 스팟spot 인스턴스와 함께 AWS 공식 Deep Learning AMI를 사용하는 법에 대해 간단히 따라가 보도록 하겠습니다. 이 글은 ‘홍대 머신러닝 스터디‘를 위해 작성되었습니다.

먼저 AWS 페이지에서 계정을 만들어야 합니다. 계정을 만들 때 향후 결재를 위해 신용카드 정보를 입력해야 하는 것외에는 특별한 것은 없습니다. 계정을 만들고 AWS 콘솔에 로그인해서 메뉴바에 서비스 드롭다운 메뉴를 펼쳐 EC2를 찾아 클릭합니다.

스팟 인스턴스는 왼쪽 메뉴 ‘스팟 요청’에서 할 수 있습니다. 그런데 웬일인지 이 메뉴를 통해 스팟 인스턴스를 요청할 때는 아마존의 Deep Learning AMI(서버 이미지)를 찾을 수가 없었습니다. 물론 직접 Nvidia 드라이버와 텐서플로를 설치해도 되지만 편리하게 제공해 주는 것을 마다할 이유는 없겠지요.

아마존의 Deep Learning AMI를 사용해서 스팟 인스턴스를 띄우려면 먼저 아래 그림과 같이 좌측의 ‘AMI’ 메뉴에서 가능합니다. 혹시 서울 리전이 아니더라도 크게 상관은 없습니다만 아래 화면과 다를 수 있습니다. 서울 리전은 오른쪽 위에서 이름 옆의 드롭다운에서 선택할 수 있습니다. 검색창의 드롭다운 메뉴를 ‘퍼블릭 이미지’로 바꾼 다음  ‘deep learning ami’를 찾습니다. 아마존 리눅스와 우분투가 있는데 여기서는 우분투 버전을 선택했습니다.

스크린샷 2018-01-17 오후 8.29.36

그 다음 ‘작업’ 버튼을 눌러 ‘스팟 요청’ 메뉴를 클릭합니다.

스크린샷 2018-01-17 오후 8.29.57

계속 읽기

QuantileTransformer

Scikit-Learn 0.19 버전에 추가된 기능 중 오늘은 QuantileTransformer() 변환기를 살펴 보겠습니다. 먼저 ‘파이썬 라이브러리를 활용한 머신러닝‘ 3장에 있는 스케일 조정의 예제와 비슷한 데이터 셋을 make_blobs 함수로 만들겠습니다. 여기서는 샘플 개수가 어느 정도 되어야 눈으로 확인하기 좋으므로 500개를 만들겠습니다.

X, y = make_blobs(n_samples=500, centers=2, random_state=4)
plt.scatter(X[:, 0], X[:, 1], c=y, edgecolors='black')

quantile-1

QuantileTransformer 는 지정된 분위수에 맞게 데이터를 변환합니다. 기본 분위수는 1,000개이며 n_quantiles 매개변수에서 변경할 수 있습니다. 여기서는 100개 정도로 지정해 보겠습니다.

quan = QuantileTransformer(n_quantiles=100)

fit() 메서드에서 입력 데이터의 범위를 분위수에 맞게 나누어 quantiles_ 속성에 저장합니다. 이를 위해 넘파이 percentile() 함수를 사용하여 분위에 해당하는 값을 손쉽게 구할 수 있습니다. QuantileTransformer 에는 기본값이 100,000인 subsample 매개변수가 있습니다.  만약 입력 데이터 개수가 subsample 보다 크면 계산량을 줄이기 위해 subsample 개수만큼 데이터를 샘플링하여 percentile() 함수를 적용합니다. percentile() 함수는 특성마다 각각 적용되므로 quantiles_ 속성의 크기는 [n_quantiles, X.shape[1]] 이 됩니다.

quan.fit(X)
print(quan.quantiles_.shape)
(100, 2)

transform() 메서드에서는 데이터를 quantiles_를 기준으로 하여 0~1 사이로 매핑합니다. 이를 위해 넘파이 interp() 함수를 사용합니다. 두 개의 특성이 모두 0~1 사이로 균등하게 나뉘어진 것을 그래프로 확인할 수 있습니다.

X_quan = quan.transform(X)
plt.scatter(X_quan[:, 0], X_quan[:, 1], c=y, edgecolors='black')

quantile-2

이런 변환은 RobustScaler와 비슷하게 이상치에 민감하지 않게 됩니다. 하지만 균등 분포라서 무조건 [0, 1] 사이로 클리핑합니다.

사실 transform() 메서드에서는 scipy.stats.uniform.ppf() 함수를 사용하여 균등 분포로 변환합니다. 하지만 interp() 함수에서 동일한 변환을 이미 하고 있기 때문에 효과가 없습니다. QuantileTransformer 에서 output_distribution=’normal’ 로 지정하면 scipy.stats.norm.ppf() 함수를 사용하여 정규 분포로 변환합니다.

quan = QuantileTransformer(output_distribution='normal', n_quantiles=100)
X_quan = quan.fit_transform(X)
plt.scatter(X_quan[:, 0], X_quan[:, 1], c=y, edgecolors='black')

quantile-3

변환된 데이터는 평균이 0, 표준편차가 1인 정규 분포임을 확인할 수 있습니다.

X_quan.mean(axis=0), X_quan.std(axis=0)
(array([-0.00172502, -0.00134149]), array([ 1.0412595 ,  1.03818794]))

StandardScaler 와 비교해 보면 평균 과 표준편차는 같지만 정규 분포를 따르지 않는 분포에서 차이를 확인할 수 있습니다. 🙂

from sklearn.preprocessing import StandardScaler
X_std = StandardScaler().fit_transform(X)
plt.scatter(X_std[:, 0], X_std[:, 1], c=y, edgecolors='black')

quantile-4

이 글의 샘플 코드는 ‘파이썬 라이브러리를 활용한 머신러닝‘ 깃허브(https://github.com/rickiepark/introduction_to_ml_with_python/blob/master/QuantileTransformer.ipynb)에서 확인할 수 있습니다.

TensorFlow 1.5.0 RC0 Release

텐서플로 1.5.0 RC0 버전이 릴리즈되었습니다. 정말 버전이 빠르게 올라가네요. 🙂 1.5.0 버전에서는 Eager ExecutionTensorFlow Lite 두 개의 굵직한 기능이 추가되었습니다(아직 프리뷰라고 합니다). 또 1.4.0 버전에서 예고한 대로 1.5.0 부터는 CUDA 9와 cuDNN 7을 사용하여 바이너리가 제공됩니다. 직접 컴파일하기 귀찮다면 CUDA, cuDNN을 업데이트해 주어야 합니다. 그리고 1.6.0 버전부터는 CPU의 AVX 명령을 지원하도록 바이너리가 제공될 예정입니다. CPU만 있는 경우에 조금 도움이 될 것 같습니다.

설치는 이전과 동일하게 pip로 설치 가능합니다.

$ pip install --upgrade --pre tensorflow
$ pip install --upgrade --pre tensorflow-gpu

(업데이트) 1.5.0 RC1 버전이 릴리즈 되었습니다.

[Review] Hands-On Machine Learning with Scikit-Learn & TensorFlow

lrg 이 책의 번역을 시작한지 벌써 6개월이 훌쩍 넘어가 버렸습니다. 개인적인 핑계가 없는 것은 아니지만, 그럼에도 불구하고 이렇게 오랜 시간이 걸린 것은 번역 작업이 어떤 병렬화도 불가능한 노동 집약적인 일이기 때문일 것입니다 🙂 작업이 거의 마무리되어 가는 시점에 원서 전체에 대한 리뷰와 작업에 대한 기록을 위해 글을 남깁니다.

이 책은 500페이지가 넘어 두툼한 편이고, Scikit-Learn 라이브러리를 사용한 머신러닝Machine Learning텐서플로TensorFlow를 사용한 딥러닝Deep Learning 파트 두 부분으로 크게 나누어 집니다(실제 최근 프랑스어 판은 두 권의 책으로 출판되었다고 합니다). 분량만으로 비교했을 때에도 약간 딥러닝 쪽에 더 무게를 두고 있습니다. 간간히 Scikit-Learn과 텐서플로를 함께 다루고 있는 책들이 있는데, 아마도 딥러닝만을 설명하기엔 머신러닝 개념이 꼭 필요하기 때문인 것 같습니다. 물론 텐서플로만 다루는 책이더라도 도입부에 회귀와 분류 모델을 간단히 텐서플로로 만들어 봄으로써 머신러닝에 대한 개념을 다루고 진행하는 것이 일반적입니다. 이 책은 두 라이브러리를 모두 다루고 있으며 유사한 책 중에서는 가장 포괄적이고 세세한 내용을 담고 있습니다. 또 이론서와 실용서의 중간 형태라고 볼 수 있습니다. 수식없이 코드만 있지 않고, 코드는 없고 이론만 늘어 놓지도 않습니다.

작업을 시작하고 나서 7월, 10월에 원서의 내용이 크게 개정되었습니다. 주로 딥러닝 파트였으며, 원서의 여러가지 오류 때문이기도 하지만 아마도 이 분야의 변화가 빠른 것도 한 몫 했을 것입니다. 바뀐 부분을 PDF로 받았는데 책으로 옮겨 적기에는 너무 양이 많아 출력해서 책에 오려 붙이고 작업을 진행했습니다. 그 외에도 괴장히 많은 에러타가 있고, 아직 컨펌되지 않은 에러타도 남아 있습니다(에러타가 많이 발견되었다는 것은 그 만큼 높은 인기를 반증합니다). 최근에는 에러타와 개정판에도 언급되지 않은 변경사항이 사파리온라인에서 발견되어 저의 멘탈을 붕괴 직전까지 몰고 가기도 했습니다. 😦

이 책이 다른 책과 구별되는 한 장을 고르라고 한다면 저는 2장을 선택할 것 같습니다. 2장은 회귀 모델을 사용해 머신러닝 프로젝트의 준비에서부터 런칭까지 모든 단계를 짚어가고 있습니다. 이 책에는 특성 공학feature engineering에 대한 장을 따로 할당하지 않았는데 2장에서 이런 부분이 다소 해소됩니다. 다른 책에서도 프로젝트 운영에 대한 가이드라인이 다소 포함되어 있기도 하지만, 여기에서처럼 실제 프로젝트를 진행하듯이 자세히 기술되어 있지는 않습니다. 이런 부분은 저자의 프로젝트 경험을 엿볼 수 있는 좋은 사례인 것 같습니다.

이 책은 구성상 독특한 점이 두 가지가 있습니다. 첫째는 다른 책들과는 달리 샘플 코드 전체를 싣지 않고 있는 것입니다. 비교적 많은 주제에 대해 상세히 논하고 있기 때문에 만약 코드를 모두 썼다면 이보다 훨씬 더 두꺼운 책이 되었을 것입니다. 설명을 위해 꼭 필요한 코드 부분만 실었으며 전체 코드는 깃허브github.com의 주피터 노트북Jupyter Notebook을 참고하도록 안내하고 있습니다. 둘째, 각 장의 끝에 연습문제를 포함하고 있습니다. 그렇다고 이 책이 대학 교재스러운 편집 구성을 가지는 것은 아닙니다. 일반 컴퓨터 과학 도서에서 연습문제를 가진 경우는 드물기 때문에 신선하기도 하고 저자의 노력을 느낄 수 있습니다. 연습문제는 크게 본문의 내용을 질문하는 것과 실습을 하는 것, 두 종류로 나누어 집니다. 내용에 대한 질문의 답은 책의 부록에 실려 있습니다. 실습 문제는 깃허브의 장별 주피터 노트북 말미에 포함되어 있습니다. 다만 아직 모든 연습문제의 답이 올려져 있지 않고 점진적으로 추가되고 있습니다. 번역서가 출간될 쯤에는 깃허브의 주피터 노트북의 내용도 모두 한글로 번역되어 제공됩니다. 추후 업데이트되는 연습문제도 함께 번역이 될 것입니다.

Scikit-Learn을 이용해서는 회귀, 분류에 대한 기본 내용으로 시작해서 서포트 벡터 머신Support Vector Machine, 결정 트리Decision Tree, 앙상블emsemble, 차원 축소Dimensionality Reduction까지 다룹니다. 아무래도 ‘파이썬 라이브러리를 활용한 머신러닝‘처럼 머신러닝 파이프라인의 모든 부분을 다루기엔 지면이 부족합니다. 하지만 다루는 모델의 이론(수식)을 충분히 설명하고 예제 코드를 병행하고 있습니다. 텐서플로를 사용해서는 기본 인공 신경망과 텐서플로에 대한 소개를 먼저 시작합니다. 그리고 심층 신경망을 학습하기 위해 당면한 문제들을 해결하는 여러가지 방법을 소개합니다. 모델 재사용, 여러가지 최적화 알고리즘, 초기화, 규제 등입니다. 보통 GPU나 분산처리 부분은 딥러닝 책의 말미에 나오는 경우가 많은데 이 책에서는 합성곱Convolution 신경망 보다도 먼저 나오고 비중이 비교적 큽니다. 그 다음 합성곱 신경망Convolution Neural Networks에서 합성곱, 패딩, 스트라이딩에 대한 설명 뿐만 아니라 LeNet-5, AlexNet, GooLeNet, ResNet 구조를 상세히 설명하고 있습니다. 순환 신경망Recurrent Neural Networks에서는 직접 간단한 RNN 연산을 만들어 보면서 순환 신경망에 대한 이해를 돕고 있으며, LSTM, GRU와 기본적인 기계번역 RNN 구조까지 설명하고 있습니다. 그 다음 오토인코더Autoencoder, 강화학습Reinforcement Learning을 다루는 장으로 이어집니다.

아래 장별 제목을 옮겨 놓았습니다. 책에 관련하여 궁금한 점이나 리뷰, 추천사에 의향이 있으시면 언제든지 댓글이나 메일 주세요. 앗 그리고 새해 복 많이 받으세요! 🙂

  1. 한눈에 보는 머신러닝
  2. 머신러닝 프로젝트 시작부터 끝까지
  3. 분류
  4. 모델 훈련
  5. 서포트 벡터 머신
  6. 결정 트리
  7. 앙상블 학습과 랜덤 포레스트
  8. 차원 축소
  9. 텐서플로 시작하기
  10. 인공 신경망 소개
  11. 심층 신경망 훈련
  12. 다중 머신과 장치를 위한 분산 텐서플로
  13. 합성곱 신경망
  14. 순환 신경망
  15. 오토인코더
  16. 강화학습
  • 연습문제 정답
  • 머신러닝 프로젝트 체크 리스트
  • SVM 쌍대 문제
  • 자동 미분
  • 인기 있는 다른 인공 신경망 구조

반복 교차 검증

Scikit-Learn 0.19 버전에서 추가된 기능 중 이번에는 모델 선택 패키지 하위에 있는 RepeatedKFold와 RepeatedStratifiedKFold를 알아 보겠습니다. 이 두 클래스는 각각 KFold와 StratifiedKFold를 감싸고 있는 래퍼 클래스처럼 보아도 무방합니다. 데이터셋의 크기가 크지 않을 경우, LOOCV를 사용하기에는 결과가 불안정해서 교차 검증을 반복적으로 여러번 수행하곤 합니다. 0.19 버전에서는 이런 반복적인 교차 검증을 수행할 수 있는 두 개의 클래스를 추가하였습니다.

RepeatedKFold와 RepeatedStratifiedKFold를 사용하는 방법은 다른 분할 클래스들과 매우 비슷합니다. 이 클래스들은 폴드를 한번만 나누는 것이 아니고 지정한 횟수(n_repeats)만큼 반복해서 나누게 되고 교차 검증 점수도 반복한 만큼 얻을 수 있습니다. 이때 기본적으로 랜덤하게 나누므로 분할기에 자동으로 Shuffle=True 옵션이 적용됩니다. n_repeats의 기본값은 10입니다.

붓꽃 데이터셋으로 이 클래스들을 사용해서 교차 검증을 해 보겠습니다.

from sklearn.datasets import load_iris
from sklearn.model_selection import cross_val_score, KFold, StratifiedKFold
from sklearn.linear_model import LogisticRegression

iris = load_iris()
logreg = LogisticRegression()

먼저 가장 기본이 되는 KFold를 사용한 교차 검증입니다.

kfold = KFold(n_splits=5)
scores = cross_val_score(logreg, iris.data, iris.target, cv=kfold)
scores, scores.mean()
(array([ 1.        ,  0.93333333,  0.43333333,  0.96666667,  0.43333333]),
 0.7533333333333333)

iris 데이터셋은 타깃값의 순서대로 훈련 데이터가 정렬되어 있기 때문에 기본 KFold에서는 교차 검증 점수가 매우 들쭉 날쭉 합니다.

이번엔 RepeatedKFold를 사용해 보겠습니다. 사용법은 KFold와 같지만 반복 횟수(n_repeats)를 설정해 주고 결과를 일정하게 고정하기 위해 random_state를 지정했습니다.

from sklearn.model_selection import RepeatedKFold
rkfold = RepeatedKFold(n_splits=5, n_repeats=5, random_state=42)
scores = cross_val_score(logreg, iris.data, iris.target, cv=rkfold)
scores, scores.mean()
(array([ 1.        ,  0.93333333,  0.9       ,  0.96666667,  0.96666667,
         0.96666667,  0.93333333,  1.        ,  1.        ,  0.83333333,
         0.93333333,  0.9       ,  0.96666667,  0.9       ,  0.93333333,
         0.96666667,  1.        ,  0.96666667,  0.93333333,  0.93333333,
         0.96666667,  0.9       ,  1.        ,  0.93333333,  0.93333333]),
 0.94666666666666677)

교차 검증 점수가 반복 횟수만큼 5개 행으로 출력되었습니다. 이전 보다 훨씬 고른 점수 분포를 보여 주며 전체 점수의 평균은 0.95 정도입니다. 교차 검증 점수의 범위를 박스플롯으로 가늠해 볼 수 있습니다.

boxplot1

다음엔 계층별 교차 검증인 StratifiedKFold를 적용해 보겠습니다.

skfold = StratifiedKFold(n_splits=5)
scores = cross_val_score(logreg, iris.data, iris.target, cv=skfold)
scores, scores.mean()
(array([ 1.        ,  0.96666667,  0.93333333,  0.9       ,  1.        ]),
 0.96000000000000019)

StratifiedKFold는 타깃값 클래스 비율을 고려하므로 전체적으로 고르게 폴드를 나누어서 교차 검증 점수가 안정되었습니다. 그럼 RepeatedStratifiedKFold를 사용해서 비교해 보겠습니다.

from sklearn.model_selection import RepeatedStratifiedKFold
rskfold = RepeatedStratifiedKFold(n_splits=5, n_repeats=5, random_state=42)
scores = cross_val_score(logreg, iris.data, iris.target, cv=rskfold)
scores, scores.mean()
(array([ 0.96666667,  0.96666667,  0.96666667,  0.93333333,  0.96666667,
         0.86666667,  0.96666667,  0.96666667,  0.93333333,  0.96666667,
         1.        ,  1.        ,  0.93333333,  0.93333333,  0.93333333,
         1.        ,  0.96666667,  0.96666667,  0.9       ,  0.96666667,
         0.96666667,  0.96666667,  0.96666667,  0.9       ,  0.96666667]),
 0.95466666666666655)

평균 교차 검증 점수는 0.955 정도로 RepeatedKFold와 StratifiedKFold의 중간에 해당하는 값입니다. 박스 플롯 끼리 비교해 보면 거의 비슷하지만 RepeatedStratifiedKFold가 약간 더 집중되어 있음을 알 수 있습니다.

boxplot2.png

이 두 클래스가 더욱 유용해질 때는 그리드서치에 사용할 때 입니다. cross_val_score와 마찬가지로 GridSearchCV의 분할은 회귀일 때는 KFold, 분류일 때는 StratifiedKFold가 기본입니다. 자원이 허락된다면 RepeatedKFold와 RepeatedStratifiedKFold로 바꾸지 않을 이유가 없습니다.

앞에서는 책의 예제와 비슷한 모양을 갖추기 위해 데이터셋을 나누지 않았습니다. 여기서는 훈련 데이터와 테스트 데이터로 나누고 RepeatedStratifiedKFold를 그리드서치에 적용해 보겠습니다.

from sklearn.model_selection import GridSearchCV, train_test_split
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=42)
param_grid = {'C': [0.001, 0.01, 0.1, 1, 10, 100, 1000]}
grid = GridSearchCV(logreg, param_grid, cv=rskfold, return_train_score=True)
grid.fit(X_train, y_train)
grid.score(X_test, y_test), grid.best_params_, grid.best_score_

테스트 점수는 완벽하고 규제 매개 변수 C의 최적값은 100이 선택되었습니다. 교차 검증 최고 점수는 0.96 입니다.

(1.0, {'C': 100}, 0.96250000000000002)

cv_results_에 있는 교차 검증 결과를 출력해 보면 훈련과 테스트에 대해 모두 5번 반복해서 각각 25개의 점수가 있는 것을 확인할 수 있습니다.

for k in grid.cv_results_:
    if 'split' in k:
    print(k, grid.cv_results_[k])

내용이 장황하므로 일부만 추렸습니다. 전체 출력 내용은 깃허브를 참고해 주세요.

split21_test_score [ 0.34782609  0.65217391  0.82608696  0.91304348  0.86956522  0.91304348
  0.86956522]
split6_test_score [ 0.34782609  0.65217391  0.7826087   0.91304348  0.95652174  0.95652174
  0.95652174]
split24_train_score [ 0.34065934  0.64835165  0.83516484  0.94505495  0.96703297  0.96703297
  0.96703297]
split3_train_score [ 0.34444444  0.65555556  0.82222222  0.95555556  0.96666667  0.96666667
  0.96666667]
...
split16_test_score [ 0.34782609  0.65217391  0.91304348  0.95652174  0.95652174  1.
  0.95652174]
split23_test_score [ 0.31818182  0.63636364  0.77272727  0.95454545  0.95454545  0.95454545
  0.95454545]
split1_test_score [ 0.34782609  0.65217391  0.86956522  0.82608696  0.91304348  0.95652174
  1.        ]
split18_train_score [ 0.34444444  0.65555556  0.82222222  0.95555556  0.96666667  0.96666667
  0.96666667]

폴드 분할을 여러번 반복하여 그리드서치의 결과를 조금 더 안정적으로 만들 수 있을 것 같습니다. 반복 횟수가 클수록 훈련 시간은 느려지게 되므로 파이프라인 캐싱을 활용하고 가용한 자원내에서 반복을 수행하는 것이 좋을 것 같습니다.

이 샘플 코드는 ‘파이썬 라이브러리를 활용한 머신러닝‘ 깃허브(https://github.com/rickiepark/introduction_to_ml_with_python/blob/master/RepeatedKFold.ipynb)에서 확인할 수 있습니다.

Convolution vs Cross-correlation

합성곱convolution 혹은 콘볼루션 신경망은 주로 시각 분야 애플리케이션에 널리 사용됩니다. 위키피디아의 합성곱 정의를 보면 “하나의 함수와 또 다른 함수를 반전 이동한 값을 곱한 다음, 구간에 대해 적분하여 새로운 함수를 구하는 수학 연산자이다“라고 잘 설명되어 있습니다. 그리고 다음과 같은 애니메이션으로도 많이 익숙합니다.

no_padding_no_strides1

조금 더 적분스러운 표현의 그림은 위키피디아의 그림이 직관적입니다.

convolution_of_spiky_function_with_box2

그림으로 표현이 어려운 점은 두 함수 중 하나를 반전시킨다는 점입니다.

합성곱과 거의 비슷한 연산으로 교차상관cross-correlation이 있습니다. 교차상관의 정의를 보면 한 함수를 반전한다는 것만 빼고는 합성곱과 동일합니다.

합성곱: (f*g)(t) = \int_{-\infty}^{\infty} f(\tau)g(t-\tau)\, d\tau

교차상관: (f*g)(t) = \int_{-\infty}^{\infty} f(\tau)g(t+\tau)\, d\tau

합성곱 신경망의 입력값에 필터(가중치 혹은 커널)를 콘볼루션하려면 필터를 뒤집어서 적용해야 합니다. 그런데 어차피 필터의 값을 학습하려는 것이 목적이기 때문에 뒤집어서 콘볼루션을 하나 그냥 하나 동일합니다. 학습과 추론inference시에 필터만 일정하면 됩니다. 그래서 딥러닝 프레임워크들은 합성곱이 아니고 그냥 교차상관으로 구현되어 있습니다. 하지만 관습상 합성곱이라고 부릅니다. 사실 이게 중요한 문제는 아닌 것 같습니다.

인기를 끌었던 “파이썬 머신 러닝” 2판이 나오면서 합성곱에 대한 내용이 많이 보강되었습니다. 보통 다른 책들은 피드포워드 신경망(혹은 퍼셉트론) 정도를 넘파이NumPy로 직접 구현해 보고 합성곱 신경망부터는 텐서플로 같은 라이브러리를 사용하는 것이 일반적입니다. 합성곱이나 패딩, 스트라이드 등을 코드로 구현하기가 번거롭기 때문이겠죠.

여기서 저자는 직접 합성곱을 구현한 코드를 추가했습니다. 그런데 교차상관이 아니라 (필터를 뒤집어서) 진짜 합성곱을 했습니다. 물론 합성곱과 교차상관에 대한 비슷한 점을 언급하기는 했지만 굳이 합성곱을 구현할 필요가 있었을까, 보통의 경우 교차상관을 사용한다고 언급해주면 좋지 않았을까 하는 생각이 들었습니다. 그래서 메일을 보냈더니 다음 중쇄할 때 관련 코멘트를 추가한다고 회신이 왔네요.

혹시 원서를 읽으시는 분이 있다면 다른 라이브러리들이 진짜 합성곱 연산을 하는 것으로 오해하지 마세요. 🙂