태그 보관물: 사이킷런

‘혼자 공부하는 머신러닝+딥러닝’ 사이킷런 1.2.2, 텐서플로 2.11.0에서 재실행 완료

<혼자 공부하는 머신러닝+딥러닝>의 주피터 노트북을 코랩(사이킷런 1.2.2와 텐서플로 2.11.0)에서 모두 재실행하여 업데이트했습니다.

9-02절의 코드가 원-핫 인코딩 벡터 크기 때문에 코랩에서 메모리 부족을 일으킵니다. 이를 피하기 위해 사용하는 단어 개수를 500개에서 300개로 줄였습니다. 자세한 수정 내용은 에러타 페이지를 참고해 주세요.

감사합니다!

‘파이썬 라이브러리를 활용한 머신러닝(개정 2판)’ 사이킷런 1.2.1에서 재실행 완료

<파이썬 라이브러리를 활용한 머신러닝(개정 2판)>의 코드를 사이킷런 1.2.1 버전에서 재실행하여 깃허브에 업데이트했습니다.

주요 수정 사항은 다음과 같습니다. 사이킷런 1.2 버전에서 load_boston() 함수가 삭제되었기 때문에 대신 보스턴 주택 데이터셋을 직접 다운로드 하도록 수정합니다. 넘파이 1.20 버전에서 np.bool이 deprecated 되었기 때문에 대신 bool을 사용합니다.

맷플롯립 3.4.0 버전에서 _rebuild() 메서드가 사라졌기 때문에 대신 3.2.0 버전에서 추가된 addfont() 메서드를 사용하여 한글 폰트를 추가하도록 수정합니다. 또 imshow() 함수에서 vmin, vmax 매개변수를 삭제했습니다.

감사합니다!

“혼자 공부하는 데이터 분석 with 파이썬”이 출간되었습니다!

파이썬을 활용한 초절정 데이터 분석 입문서 <혼자 공부하는 데이터 분석 with 파이썬>이 출간되었습니다!

이 책은 파이썬 데이터 과학 생태계의 핵심 라이브러리인 판다스, 넘파이, 맷플롯립, 사이파이, 사이킷런을 사용하여 데이터 분석에 필요한 기초 지식을 쌓을 수 있도록 돕습니다. 또한 뷰티플수프, 리퀘스트 같은 유용한 다른 패키지도 함께 배울 수 있죠.

데이터 수집, 정제, 분석, 시각화, 검증 그리고 모델링까지 이 분야의 기술이 궁금하다면 바로 이 책으로 시작하세요!

동영상 강의도 함께 들으시면 책을 완독하는데 도움이 되실거에요! 🙂

한빛미디어의 혼공단에 참여해서 같이 공부하시면 더욱 좋습니다! 🙂

“파이썬 라이브러리를 활용한 머신러닝” 사이킷런 1.1 버전 업데이트

최근 릴리스된 사이킷런 1.1.x 버전에서 변경된 부분에 맞춰 <(번역개정2판) 파이썬 라이브러리를 활용한 머신러닝>의 본문 내용을 다음과 같이 업데이트합니다!

  1. (p102) 사이킷런 1.3 버전부터 SGDClassifier의 loss 매개변수 중 로지스틱 손실을 의미하는 'log'가 'log_loss'로 바뀔 예정이므로 첫 번째 줄에서 “훈련합니다.”를 “훈련합니다(1.3 버전에서 'log'가 'log_loss'로 바뀔 예정입니다).“로 수정합니다.
  2. RandomForestClassifier와 ExtraTreesClassifier의 max_features 매개변수 기본값이 'auto'에서 'sqrt'로 바뀔 예정이므로,
    • (p127) 주석 47번을 다음과 같이 바꿉니다. “RandomForestClassifier의 max_features 기본값이 'auto'로 sqrt(n_features)를 의미합니다. 1.3 버전에서는 max_features 기본값이 'auto'에서 'sqrt'로 바뀔 예정입니다.
    • (p143) 표 2-2에서 랜덤포레스트와 엑스트라트리의 ‘특성 개수’ 항목을 다음과 같이 수정합니다.
      분류: max_features=’auto’ (1.3 버전에서 ‘sqrt’로 변경예정)
      회귀: 전체 특성
    • (p315) 주석 20번에서 “랜덤 포레스트의 기본값은 "auto"로 특성 개수의 제곱근을 나타내며, … 하지만 max_features="auto"로 설정하면…”을 “랜덤 포레스트 분류기는 기본적으로 특성 개수의 제곱근을 사용하며, … 하지만 max_features="sqrt"로 설정하면…”로 수정합니다.
  3. GradientBoostingClassifier의 loss 매개변수 기본값이 1.3 버전에서 'deviance'에서 'log_loss'로 바뀔 예정이므로
    • (p128) 주석 50번 네 번째 줄에서 “손실을 의미하는 'deviance'입니다.”를 “손실을 의미하는 'deviance'입니다(1.3 버전에서 'deviance'가 'log_loss'로 바뀔 예정입니다).”로 수정합니다.
    • (p143) 표 2-2의 그레이디언트 부스팅의 ‘손실 함수’ 항목에서 “(로지스틱 회귀)”를 “(로지스틱 손실. 1.3 버전에서 'log_loss'로 바뀔 예정)”으로 수정합니다.
  4. (p143) HistGradientBoostingClassifier의 loss 매개변수 기본값이 1.3 버전에서 'auto'에서 'log_loss'로 바뀔 예정이므로 표 2-2의 히스토그램 기반 부스팅의 ‘손실 함수’ 항목에서 “(이진분류는 'binary_crossentropy', 다중 분류는 'categorical_crossentropy')”을 “(로지스틱 손실. 1.3 버전에서 'log_loss'로 바뀔 예정)”로 수정합니다.
  5. (p297) 버전 1.1에서 OneHotEncoder 클래스에 자주 등장하지 않는 범주를 하나로 묶어주는 min_frequency와 max_categories 매개변수가 추가 되었습니다. 4.2절 아래 세 번째 줄에서 “OneHotEncoder 클래스에 구현되어 있습니다.”를 “OneHotEncoder 클래스에 구현되어 있습니다.<주석>옮긴이_ 버전 1.1에서 추가된 min_frequency 매개변수를 사용하면 특정 횟수 또는 비율 보다 적게 등장하는 범주를 하나의 특성으로 합칠 수 있습니다. 또한 max_categories 매개변수를 사용하여 원-핫 인코딩으로 만들어지는 특성의 개수를 제한할 수 있습니다.</주석>“로 수정합니다.

감사합니다! 🙂

“파이썬 라이브러리를 활용한 머신러닝(번역개정2판)”이 출간되었습니다!

2017년 처음 이 책을 작업할 때 사이킷런 코드를 보면서 무식하게 노트에 한 줄 한 줄 펜으로 번역해서 옮겼던 기억이 납니다. 사이킷런 개발자가 쓴 책인만큼 잘 옮기고 싶었고 그때는 지금처럼 좋은 책이 많지 않아서 더 그랬던 것 같습니다.

무슨 생각이 들었는지 읽을만한 책을 만들자고 호기롭게 시작한 그 도전이 5년을 지나 오늘 여기까지 오게된 것 같네요. 이 책이 없었다면 아마 지금 다른 일을 하고 있을 것 같습니다.

2019년 번역개정판을 내고도 많은 분들에게 꾸준히 사랑을 받았습니다. 정말 감사드립니다. 새로운 번역개정2판은 최근 릴리즈된 사이킷런 1.0 버전을 반영하였습니다. 새로운 기능과 변경된 내용을 많이 담아서 500페이지가 넘었습니다. 또 구글 코랩에서 실습할 수 있도록 코드를 업데이트했습니다. 흔쾌히 번역개정2판을 허락해 주신 한빛미디어 출판사에 감사드립니다. 다시 한 번 머신러닝 학습의 엔트로피를 줄이는데 도움이 되기를 기대합니다! 감사합니다! 🙂

“머신러닝 파워드 애플리케이션” 사이킷런 1.0 업데이트 완료!

<머신러닝 파워드 애플리케이션>의 주피터 노트북을 사이킷런 1.0에 맞추어 업데이트했습니다. 업데이트된 노트북은 깃허브 저장소에서 확인하실 수 있습니다. 감사합니다! 🙂

[핸즈온 머신러닝 2판], [머신 러닝 교과서 3판] 사이킷런 1.0 업데이트 완료

[핸즈온 머신러닝 2판], [머신 러닝 교과서 3판]의 주피터 노트북을 사이킷런 1.0 버전에 맞추어 모두 테스트하여 깃허브에 반영하였습니다. 변경이 필요한 부분은 수정하거나 주석을 추가했습니다. 아래 에러타를 참고해 주세요.

감사합니다! 🙂

핸즈온 머신러닝 2판

  • (p197) 넘파이 1.20버전부터 np.int가 deprecated 되었기 때문에 첫 번째 코드 블럭의 마지막 줄에서 astype(np.int)를 astype(int)로 수정합니다.
  • (p179) 사이킷런 1.0에서 get_feature_names() 메서드를 가진 변환기에 get_feature_names_out() 메서드가 추가되었고 get_feature_names()는 deprecated 되어 1.2 버전에서 삭제될 예정입니다. 따라서 23번 주석에서 get_feature_names()를 get_feature_names_out()으로 수정합니다.

머신 러닝 교과서 3판

  • (p157) 넘파이 1.20버전부터 np.int가 deprecated 되었기 때문에 아래에서 7번째 줄에 OrdinalEncoder(dtype=np.int)를 OrdinalEncoder(dtype=int)로 수정합니다. (p158) 위에서 12번째 줄에 “np.int로 지정했습니다”를 “int로 지정했습니다”로 수정합니다. (p159) 위에서 14번째 줄에 OrdinalEncoder()를 OrdinalEncoder(dtype=int)로 수정합니다.
  • (p236) 아래에서 5번째 줄 끝에 다음 주석을 추가합니다. “구현되어 있습니다.<주석>역주 사이킷런 1.2 버전에서 TSNE 클래스의 init 매개변수의 기본값이 'random'에서 'pca'로 바뀔 예정입니다.”
  • (p271) 사이킷런 1.0 버전에서 plot_confusion_matrix()가 deprecated 되었고 1.2 버전에서는 삭제될 예정입니다. 위에서 4번째 줄에서 from sklearn.metrics import plot_confusion_matrix를 from sklearn.metrics import ConfusionMatrixDisplay로 수정합니다. 위에서 5번째 줄과 아래에서 4번째 줄에서 plot_confusion_matrix(pipe_svc, ...)를 ConfusionMatrixDisplay.from_estimator(pipe_svc, ...)로 수정합니다.
  • (p278) 사이킷런 1.0 버전에서 plot_roc_curve()가 deprecated 되었고 1.2 버전에서는 삭제될 예정입니다. 위에서 6번째 줄에서 from sklearn.metrics import plot_roc_curve를 from sklearn.metrics import RocCurveDisplay로 수정합니다. 위에서 12번째 줄에서 plot_roc_curve(pipe_lr, ...)를 RocCurveDisplay.from_estimator(pipe_lr, ...)로 수정합니다.
  • (p279) 사이킷런 1.0 버전에서 plot_precision_recall_curve()가 deprecated 되었고 1.2 버전에서는 삭제될 예정입니다. 위에서 5번째 줄에서 from sklearn.metrics import plot_precision_recall_curve를 from sklearn.metrics import PrecisionRecallDisplay로 수정합니다. 위에서 11번째 줄에서 plot_precision_recall_curve(pipe_lr, ...)를 PrecisionRecallDisplay.from_estimator(pipe_lr, ...)로 수정합니다.
  • (p328) 사이킷런 1.0에서 히스토그램 기반 부스팅이 experimental 모듈 아래에서 벗어났습니다. 따라서 위에서 7번째 줄에서 시작하는 문장부터 9번째 줄까지 다음 내용을 삭제합니다. “이 클래스는 아직 실험적이기 때문에 사용하기 전에 먼저 활성화해야 합니다.
    from sklearn.experimental import enable_hist_gradient_boosting
  • (p329) XGBoost 1.3.0에서 이진 분류 기본 평가 지표가 'error'에서 'logloss'로 변경되었습니다. 또한 향후 레이블 인코딩을 수행하지 않는다는 경고가 발생합니다. 경고를 없애기 위해 위에서 6번째 줄에 XGBClassifier(tree_method='hist', random_state=1)을 XGBClassifier(tree_method='hist', eval_metric='logloss', use_label_encoding=False, random_state=1)로 수정합니다.
  • (p415) 아래에서 6번째 줄에 price_std 배열을 2차원으로 바꾸기 위해 inverse_transform(price_std)를 inverse_transform(price_std.reshape(-1,1))로 수정합니다.
  • (p419) 사이킷런 1.0에서 'absolute_loss'가 deprecated 되었고 1.2 버전에서 삭제될 예정이기 때문에 대신 'absolute_error'를 사용합니다. 아래에서 4번째 줄에 loss='absolute_loss'를 loss='absolute_error'로 수정합니다.
  • (p428) 사이킷런 1.0에서 get_feature_names() 메서드를 가진 변환기에 get_feature_names_out() 메서드가 추가되었고 get_feature_names()는 deprecated 되어 1.2 버전에서 삭제될 예정입니다. 주석의 끝에서 2번째 줄에 get_feature_names()를 get_feature_names_out()으로 수정합니다.
  • (p436) 사이킷런 1.0에서 'mse'가 deprecated 되었고 1.2 버전에서 삭제될 예정이기 때문에 대신 'squared_error'를 사용합니다. 위에서 11번째 줄에 criterion='mse'를 criterion='squared_error'로 수정합니다.

사이킷런 ❤️ 판다스

사이킷런 버전 1.0에서 판다스 데이터프레임을 모델이나 변환기에 입력했을 때 열 이름을 feature_names_in_ 속성에 저장합니다. 향후에는 변환기가 판다스 데이터프레임을 입력으로 받으면 출력도 데이터프레임으로 만들 예정입니다. <핸즈온 머신러닝 2판>의 저자 오렐리앙 제롱이 새로 추가된 사이킷런의 데이터프레임 연동 기능에 대해 간단한 튜토리얼을 주피터 노트북으로 만들었습니다. 내용이 좋아 제가 한글로 번역했습니다. 무료한 주말(?)에 재미있게 보세요! 🙂

[파이썬 라이브러리를 활용한 머신러닝], [파이썬을 활용한 머신러닝 쿡북] 사이킷런 1.0 업데이트 완료

안녕하세요. [파이썬 라이브러리를 활용한 머신러닝], [파이썬을 활용한 머신러닝 쿡북]의 주피터 노트북 코드를 사이킷런 1.0 버전에 맞추어 모두 테스트하여 깃허브에 반영하였습니다. 또한 변경이 필요한 본문을 수정하고 주석을 추가했습니다. 다음 에러타 내용을 참고해 주세요.

감사합니다! 🙂

파이썬 라이브러리를 활용한 머신러닝

  1. (p62) 위에서 3번째 줄에 다음처럼 주석을 추가합니다. “보스턴 주택가격 데이터셋<주석>옮긴이_ 보스턴 주택가격 데이터셋의 특성에는 흑인 인구 비율이 들어 있어 요즘 시대에 적절치 않다는 의견이 많았습니다. 사이킷런 1.0 버전에서 load_boston() 함수가 deprecated 되었고 1.2 버전에서 삭제될 예정입니다.</주석>을 사용하겠습니다”
  2. (p136, 137) In [79], [80]에서 Axes3D가 자동으로 그림에 추가되는 방식은 matplotlib 3.4 버전에서 deprecated 되었기 때문에 관련 경고를 피하기 위해 ax = Axes3D(figure, elev=-152, azim=-26)을 ax = Axes3D(figure, elev=-152, azim=-26, auto_add_to_figure=False); figure.add_axes(ax)로 수정합니다.
  3. (p156) In [102]에서 다음처럼 MLPClassifier 객체 생성시 max_iter 매개변수를 지정합니다. mlp = MLPClassifier(max_iter=1000, random_state=0)
  4. (p205) In [26]의 첫 번째 줄에서 np.bool이 1.20버전부터 deprecated 되었기 때문에 대신 bool을 사용합니다. mask = np.zeros(people.target.shape, dtype=bool)
  5. (p223) 4번째 줄에 다음과 같이 주석을 추가합니다. “결과를 비교해 보겠습니다.<주석>옮긴이_ 사이킷런 1.2 버전에서 TSNE 클래스의 init 매개변수의 기본값이 'random'에서 'pca'로 바뀔 예정입니다.</주석> t-SNE는 새 데이터를..”
  6. get_feature_names() 메서드를 가진 변환기에 get_feature_names_out() 메서드가 추가되었고 get_feature_names()는 deprecated 되어 1.2 버전에서 삭제될 예정입니다. 따라서 (p281) 마지막 문장과 In [13],  (p294) 첫 번째 문장과 In [34], (p297) 마지막 문장과 In[39], (p320) 첫 번째 문장과 In [72], (p423) In [16], (p426) In [21], (p430) In [30], (p434) In [35]와 In [36], (p435) In [38], (p437) In [41], (p450) In [51], (p451) In [55]에서 get_feature_names()를 get_feature_names_out()으로 수정합니다.
  7. (p366) In [52]에서 0 나눗셈 경고를 피하기 위해 다음처럼 zero_division 매개변수를 지정합니다. classification_report(y_test, pred_most_frequent, target_names=["9 아님", "9"], zero_division=0))
  8. (p443) 아래에서 4번째 줄에 다음처럼 주석을 추가합니다. “설치 페이지(…)를 참고하세요.<주석>옮긴이_ 최신 버전의 tweepy 패키지를 설치할 경우 konlpy에서 StreamListener가 없다는 에러가 발생하므로 3.10버전을 설치해 주세요. pip install tweepy==3.10</주석> KoNLPy는 5개의…”
  9. (p335) 주석 7번 끝에 다음을 추가합니다. “사이킷런 1.0 버전에서 그룹을 유지하면서 클래스 비율에 맞게 분할하는 StratifiedGroupKFold가 추가되었습니다.”
  10. (p293) 주석 15번 끝에 다음 문장을 추가합니다. “사이킷런 1.0 버전부터는 PolynomialFeatures 클래스의 degree 매개변수에 변환할 최소 차수과 최대 차수를 튜플로 전달할 수 있습니다.”

파이썬을 활용한 머신러닝 쿡북

  1. (p75, 79, 81, 85, 86, 88, 91, 93, 95, 97, 99, 100, 102, 107, 108, 110) 타이타닉 데이터를 다운로드하는 https://tinyurl.com/titanic_csv 주소에 문제가 생겨서 https://bit.ly/titanic_csv_data로 바꿉니다.
  2. (p177) 덧붙임의 첫 번째 문단 끝에 다음 주석을 추가합니다. “…설치할 수 있습니다.<주석>옮긴이_ 최신 버전의 tweepy 패키지가 설치될 경우 konlpy에서 StreamListener가 없다는 에러가 발생하므로 3.10버전을 설치해 주세요. pip install tweepy==3.10</주석>
  3. 사이킷런 1.0에서 get_feature_names() 메서드를 가진 변환기에 get_feature_names_out() 메서드가 추가되었고 get_feature_names()는 deprecated 되어 1.2 버전에서 삭제될 예정입니다. 따라서 (p128) 마지막 줄, (p129) 1번째 줄, (p156) 위에서 15, 17번째 줄, (p179) 마지막 줄, (180) 2번째 줄, (p493) 아래에서 2번째 줄에서 get_feature_names를 get_feature_names_out으로 수정합니다.
  4. (p229) 위에서 3번째 줄에서 corner의 값을 정수로 변환하기 위해 corner[0].astype('int')로 수정합니다.
  5. (p252) 9.4절 [해결]의 첫 번째 문장 끝에 다음 주석을 추가합니다. “… 차원을 축소합니다.<주석>옮긴이_ 기본값인 init=None일 때 n_components가 n_samples나 n_features 보다 작으면 init='nndsvd'가 됩니다. 사이킷런 1.1버전부터 이 값이 'nndsvda'로 바뀔 예정입니다.</주석>
  6. (p252) 아래에서 9번째 줄에서 NMF 객체를 만들 때 반복횟수를 늘려주기 위해 max_iter 매개변수를 추가합니다. nmf = NMF(n_components=10, max_iter=1000, random_state=1)
  7. (p283) 11.2절 [해결]의 첫 번째 문장 끝에 다음 주석을 추가합니다. “…모델을 만듭니다.<주석>옮긴이_ 보스턴 주택가격 데이터셋의 특성에는 흑인 인구 비율이 들어 있어 요즘 시대에 적절치 않다는 의견이 많았습니다. 사이킷런 1.0 버전에서 load_boston() 함수가 deprecated 되었고 1.2 버전에서 삭제될 예정입니다.</주석>
  8. 로지스틱 회귀 객체를 만들 때 반복횟수를 늘려주기 위해 (p300) 위에서 15번째 줄, (p311) 위에서 5번째 줄에 max_iter 매개변수를 추가합니다. classifier = LogisticRegression(max_iter=1000)
  9. (p312) 위에서 4번째 줄에 0 나눗셈 경고를 피하기 위해 다음처럼 zero_division 매개변수를 지정합니다. print(classification_report(target_test, target_predicted, labels=[0,1,2,3], zero_division=0))
  10. 사이킷런 0.22 버전에서 solver 매개변수의 기본값이 'liblinear'에서 'lbfgs'로 변경되었습니다. 'lbfgs'는 'l2' 페널티만 지원합니다. 예제에서 'l1''l2' 페널티를 그리드서치로 탐색하기 위해 solver='liblinear'로 지정합니다. 또 반복 횟수를 늘려주기 위해 max_iter=1000을 추가합니다. (p318) 위에서 13번째 줄, (p320) 아래에서 3번째 줄, (p323) 위에서 15번째 줄, (p325) 아래에서 7번째 줄, (p327) 아래에서 8번째 줄, (p329) 위에서 11번째 줄에서 LogisticRegression()을 LogisticRegression(solver='liblinear', max_iter=1000)으로 바꿉니다.
  11. (p331) 위에서 8번째 줄에 반복 횟수를 늘려 주기 위해 max_iter 변수를 추가합니다. logit = linear_model.LogisticRegressionCV(max_iter=1000, Cs=100)
  12. (p332) 사이킷런 1.0에서 매개변수 변화에 따른 경고가 발생하지 않으므로 아래에서 4번째 줄을 다음처럼 수정합니다. logistic = linear_model.LogisticRegression(max_iter=1000)
  13. 사이킷런 1.0에서 매개변수 변화에 따른 경고가 발생하지 않으므로 위에서 (p333) 5번째 줄에 iid=False, 7번째 줄에 cv=3, 아래에서 4번째 줄에 iid=False, (p334) 위에서 8번째 줄에 cv=3을 삭제합니다.
  14. (p335) 위에서 2 번째 줄 끝에서 시작되는 문장, 아래에서 3번째 줄에 있는 문장, 마지막 줄에 있는 문장인 “경고를 출력하지 않기 위해 … 로 지정합니다”를 삭제합니다.
  15. (p355) 결정 트리의 criterion 매개변수 값인 mae가 사이킷런 1.0에서 deprecated되었고 1.2 버전에서 삭제될 예정입니다(mse도 마찬가지). 대신 'absolute_error'를 사용합니다. 위에서 6번째 줄을 decisiontree_mae = DecisionTreeRegressor(criterion="absolute_error", random_state=0)으로 수정합니다.
  16. (p374) 사이킷런 1.0에서 히스토그램 기반 부스팅이 experimental 모듈 아래에서 벗어났습니다. 따라서 위에서 8번째 줄 끝에서 시작하는 문장부터 12번째 줄까지 다음 내용을 삭제합니다.
    “이 클래스들은 실험적이기 때문에 명시적으로 사용한다는 것을 선언해야 합니다.
    # 히스토그램 기반의 그레이디언트 부스팅을 활성화하고 라이브러리를 임포트합니다.
    from sklearn.experimental import enable_hist_gradient_boosting
  17. (p397) 아래에서 2번째 줄에 compute_class_weight 함수에 키워드 매개변수를 추가합니다. compute_class_weight('balanced', classes=[0,1], y=target)

“머신 러닝 교과서 3판”이 출간되었습니다.

세바스찬 라시카Sebastian Raschka와 바히드 미자리리Vahid Mirjalili가 쓴 아마존 베스트셀러 <Python Machine Learning 3rd Ed.>의 번역판인 <머신 러닝 교과서 3판>이 출간되었습니다!

3판은 사이킷런과 텐서플로 최신 버전의 변경 사항을 담았으며 코랩에서 실행할 수 있습니다. 특히 딥러닝 파트는 완전히 새롭게 리뉴얼되어 콘텐츠가 크게 보강되었습니다. 무엇보다도 이번에 새롭게 GAN강화 학습이 추가되어 머신러닝의 끝판왕이라고 부를만합니다!

출간에 맞추어 동영상 강의를 제작해 유튜브에 올리고 있습니다. 혼자 공부하시는 분들에게 도움이 되었으면 좋겠습니다. 궁금한 점이 있다면 블로그나 카카오 오픈채팅(http://bit.ly/tensor-chat, 참여코드: tensor)으로 알려 주세요!

온라인/오프라인 서점에서 판매 중입니다! 868페이지, 풀 컬러: 39,600원 [Yes24], [교보문고], [알라딘]