태그 보관물: 케라스 창시자에게 배우는 딥러닝

“케라스 창시자에게 배우는 딥러닝 2판”이 출간되었습니다!

케라스(Keras) 라이브러리의 창시자 프랑소와 숄레(François Chollet)가 쓴 <Deep Learning with Python 2nd Edition>의 번역서 <케라스 창시자에게 배우는 딥러닝 2판>이 출간되었습니다!

1판의 거의 모든 부분의 내용이 바뀌거나 새롭게 추가되었습니다. 컴퓨터 비전과 자연어 처리 분야의 새로운 예제가 추가 되었고 트랜스포머 모델을 밑바닥부터 만들어 볼 수 있습니다!

이 책은 특별히 풀컬러 양장본으로 출간되었습니다. 좋은 책을 오래 소장할 수 있도록 아낌없는 투자를 해 주신 길벗 출판사에 감사드립니다. 제일 좋아하는 책 중에 하나가 양장으로 출간되다니 너무 기쁩니다! ㅎ

지금 온라인/오프라인 구매가 가능합니다! [예스24] [교보문고] [알라딘]

“케라스 창시자에게 배우는 딥러닝 2판”, “개발자를 위한 머신러닝&딥러닝” 출간 소식

올해 상반기에 작업한 <케라스 창시자에게 배우는 딥러닝 2판>과 <개발자를 위한 머신러닝&딥러닝> 책이 곧 출간될 예정입니다. 아마 두 책 모두 다음 주 중에 예약 판매가 시작되고 이달 말에 배송이 될 것 같습니다.

<케라스 창시자에게 배우는 딥러닝 2판>은 길벗 출판사의 머신러닝 시리즈 디자인을 선택하지 않고 특별히 원서 표지를 사용합니다. 또 고급 양장본으로 출간됩니다! 출판사에서 이렇게 한 책에 특별한 예외를 두는 것은 쉬운 일이 아닙니다. 이 책의 가치를 믿고 독자들의 의견을 적극 수용해 주신 덕분입니다. 이 책은 읽는데서 끝나지 않고 소장할 가치가 있는 거죠! 저에게도 아주 큰 영광입니다. 양장 도서를 갖게 되다니요! 🙂

<개발자를 위한 머신러닝&딥러닝>은 저자 로런스 모로니에게 출간 소식을 전했더니 특별히 스타필드 별마당도서관에 진열되었으면 좋겠다고 하네요. ㅎ

두 책 모두 기대하셔도 좋습니다. 감사합니다!

[Deep Learning with Python] 2판 번역 완료!

케라스(Keras) 라이브러리를 만든 프랑소와 숄레(François Chollet)의 딥러닝 책인 <Deep Learning with Python>의 2판 번역을 마쳤습니다. 원서는 현재 아마존에서 신경망 분야에서 5위에 랭크되어 있습니다. 예상대로 프랑소와의 책이라 매우 높은 인기를 얻고 있네요. 🙂

2판은 1판에 비해 많은 내용이 추가되고 콘텐츠 배열에도 변화가 있었습니다. 가장 대표적인 변화는 텐서플로 2.0 적용, 새로운 케라스 API, 합성곱과 순환 신경망 예제, 트랜스포머 추가 등입니다.

1판과 2판의 차이를 한눈에 보기 쉽게 그림으로 그려보았습니다. 그 아래에는 조금 더 자세히 2판의 장마다 1판의 어떤 부분과 연관이 있는지 새롭게 추가된 부분은 무엇인지 요약했습니다. 책을 보시는데 도움이 되셨으면 좋겠습니다. 이 번역서는 길벗 출판사를 통해 <케라스 창시자에게 배우는 딥러닝 2판>으로 곧 찾아뵙겠습니다! 🙂

  • 1장에 큰 변화는 없고 그간 바뀐 세상 물정을 반영했습니다. 1장에서부터 트랜스포머스를 언급합니다.
  • 2장의 구성은 1판과 비슷합니다. 아핀 변환, 경사 하강법, 연쇄 법칙에 대해 그림과 코드을 추가하여 자세히 설명합니다. 텐서플로의 그레이디언트 테이프를 소개하고 이를 사용해 간단한 완전 연결 신경망을 “밑바닥”부터 구현하는 예제가 추가되었습니다.
  • 1판 3장의 전반부가 확대되어 2판에서는 독립적인 3장이 되었습니다. 텐서플로와 케라스 히스토리를 조금 더 자세히 소개하고 딥러닝 작업 환경을 설명하는 부분에 코랩이 추가되었습니다. 2장에서 살짝 언급한 텐서, 변수, 그레이디언트 테이프를 다시 자세히 소개하고, 전반적인 케라스 모델 API를 소개합니다. 특히 build, call, __call__ 메서드의 존재 이유를 상세히 설명하는 부분이 눈에 띄네요.
  • 4장은 1판의 3장 후반부 예제 세 개(이진 분류, 다중 분류, 회귀)를 그대로 사용하며 내용도 거의 변화가 없습니다.
  • 1판 4장의 일부 절들이 확장되어 2판의 5장이 되었습니다. 특히 1판에 없던 과대적합의 발생 원인과 일반화란 무엇인지에 대해 매우 상세하게 설명하고 있는 점이 돋보입니다. 또한 훈련 성능을 높이기 위한 방법도 추가되었습니다.
  • 6장은 1판 4장의 마지막 절에서 간단히 소개한 머신러닝 워크플로를 확장했습니다. 문제 정의, 데이터 수집, 데이터 관련 주의 사항, 성공 지표, 전처리, 모델 개발, 규제, 튜닝, 여러가지 배포 옵션, 최적화, 유지 관리까지 모델의 전 생애주기를 다룹니다.
  • 1판은 비교적 책 후반에 함수형 API와 텐서보드를 소개합니다. 2판에서는 중간 부분으로 전진 배치 되었습니다. 2판 7장에서는 함수형 API는 물론 모델의 서브클래싱 방법, 이들을 섞어 쓰는 방법까지 자세히 소개합니다. 또한 사용자 정의 지표, 사용자 정의 콜백, 사용자 정의 훈련 루프까지 체계적으로 설명을 풀어갑니다. 훈련과 추론 로직을 완전히 밑바닥부터 새로 만드는 방법과 기존의 fit(), evaluate()를 사용하면서 나만의 알고리즘을 적용하는 방법도 모두 설명하네요.
  • 1판의 5장 합성곱 신경망이 2판에서는 두 개의 장으로 확대되었습니다. 앞부분의 고양이vs강아지 데이터셋을 사용한 컨브넷 예제들은 8장이 되었고 뒷부분의 합성곱 시각화 부분은 9장으로 넘어갔습니다. 8장의 내용은 이전과 거의 동일합니다. 주된 변경 사항은 기존의 제너레이터를 사용한 모델 훈련과 데이터 증식을 텐서플로 데이터셋과 케라스에 추가된 이미지 증식 층으로 바꾸었습니다. 덕분에 코드는 훨씬 간결하고 이해하기 쉬워졌네요. 이제 고급 컴퓨터 비전을 다루는 9장으로 넘어갑니다.
  • 9장은 고급 컴퓨터 비전을 다룹니다. 1판에 없었던 Oxford-IIIT Pet 데이터셋을 사용한 이미지 분할 예제가 추가되었습니다. 그다음 1판 7장에 있던 고급 딥러닝 구조(잔차 연결, 배치 정규화, 깊이별 분리 합성곱)가 9장으로 옮겨 왔습니다. 세 구조에 대한 설명이 크게 개선되었고 합성곱 신경망 구조의 일반적인 패턴에 대한 식견을 피력하는 절이 돋보입니다. 그다음은 1판 5장에 있던 합성곱 시각화 부분이 이어집니다. 1판에서는 필터 시각화와 히트맵 시각화를 위해 VGG16 모델을 썼었는데 2판에서는 Xception 모델을 사용합니다.
  • 1판 RNN 장이 2판에서 2개 장으로 확대되었습니다. 10장에서는 예나 온도 예제, RNN, 1D 컨브넷, LSTM, 드롭아웃, 스태킹 RNN, 양방향 RNN을 다룹니다. 자연스럽게 LSTM 등의 예제는 IMDB가 아니라 예나 데이터셋을 사용합니다. 1판과 크게 달라진 점은 제너레이터 방식이 아니라 새로운 timeseries_dataset_from_array 함수를 사용하여 코드가 훨씬 간결해졌습니다!
  • 11장은 이 책에서 가장 긴 장입니다. 1판 6장의 IMDB 텍스트 분류 예제를 주로 다루지만 완전히 새로 쓰여졌습니다. 먼저 TextVectorization 층과 함께 텍스트 전처리에 대해 자세히 소개합니다. BoW와 n-그램도 더욱 자세히 설명하고 1판에 없던 tf-idf 예제도 추가되었습니다. TextVectorization 층을 tf.data 파이프라인 또는 모델에 포함시킬 때를 명확하게 짚어주니 아주 좋네요. 그다음은 자연스럽게 임베딩 층으로 넘어가 사전 훈련된 단어 벡터를 사용하는 것까지 진행됩니다. 텍스트 분류에서 BoW와 RNN을 선택하는 기준에 대한 경험 법칙도 소개합니다. 이제 11장의 나머지 절반은 온통 트랜스포머 이야기입니다. 수식을 사용하지 않으면서 단계적으로 이해하기 쉽게 설명하는 저자의 능력이 여기에서 빛을 발합니다. 셀프 어텐션, 멀티 헤드 어텐션, 트랜스포머 인코더, 위치 임베딩까지 진행한 다음 다시 IMDB 텍스트를 분류해 봅니다. 그다음 텍스트 분류를 넘어서 기계 번역 예제(영어->스페인어)로 이동합니다. 먼저 LSTM으로 seq2seq 모델을 만들면서 인코더, 디코더의 상호 작용을 이해합니다. 그다음 트랜스포머 디코더를 만들고 트랜스포머 인코더와 합쳐서 완전한 기계 번역 모델을 만듭니다! 와우!!! 🙂
  • 12장은 생성 딥러닝을 다루며 1판의 8장과 구성이 비슷합니다. 텍스트 생성, 딥드림, 뉴럴 스타일 트랜스퍼, 변이형 오토인코더, GAN을 다룹니다. 1판과 다른 점은 LSTM과 세익스피어 데이터셋 대신 트랜스포머 디코더와 IMDB 데이터셋을 사용해 텍스트 생성 예제를 만듭니다. DCGAN 예제에서는 CIFAR10 데이터셋 대신에 CelebA 데이터셋을 사용합니다. 물론 전체 코드는 대부분 서브클래싱 방식과 최신 케라스 API로 바뀌었습니다.
  • 13장은 실전을 위한 모범 사례를 다룹니다. 원래 1판 7장에 있던 모범 사례는 (앙상블을 제외하고) 대부분 2판에서 다른 장으로 흡수되었습니다. 따라서 2판 13장에 들어간 모범 사례는 모두 새로 작성한 것입니다. 하이퍼파라미터 튜닝을 위해 KerasTuner를 소개하고, 혼합 정밀도를 사용한 훈련, 다중 GPU 훈련과 코랩 TPU 사용 방법까지 다룹니다.
  • 14장은 1판의 마지막 장과 유사하게 전체 내용을 정리하고 딥러닝에 대한 저자의 해석과 전망을 담고 있습니다. 하지만 내용이 많이 확대되었습니다. 지능이란 무엇인지, 왜 생겼는지 탐구해 보고 어떻게 달성할 수 있는지 질문합니다. 이 질문에 대한 대답으로 일반화를 달성하기 위한 추상화와 프로그램 합성을 엮어서 이야기를 풀어 갑니다. 이 장은 몇 년전 프랑소와가 쓴 지능 측정에 대한 논문에서 중요 내용을 요약한 것 같습니다. 프랑소와가 그리는 미래를 여기서 볼 수 있습니다!

[핸즈온 머신러닝 2], [GAN 인 액션], [파이썬을 활용한 머신러닝 쿡북], [케라스 창시자에게 배우는 딥러닝], [파이토치로 배우는 자연어 처리] 텐서플로 2.6과 파이토치 1.9 버전 테스트 완료

[핸즈온 머신러닝 2], [GAN 인 액션], [파이썬을 활용한 머신러닝 쿡북], [케라스 창시자에게 배우는 딥러닝]의 주피터 코드를 텐서플로 2.6, 케라스 2.6 버전에서 테스트하여 깃허브에 반영하였습니다. [파이토치로 배우는 자연어 처리]는 파이토치 1.9 버전에서 테스트하여 깃허브에 반영하였습니다. 책을 보실 때 참고하세요. 감사합니다!

“케라스 창시자에게 배우는 딥러닝” 텐서플로 2.4 업데이트

<케라스 창시자에게 배우는 딥러닝>의 주피터 노트북을 텐서플로 2.4에서 재실행하여 깃허브에 업로드했습니다.

책은 멀티백엔드 케라스 버전을 기반으로 쓰여졌습니다. 깃허브 저장소의 마스터 브랜치는 멀티백엔드 케라스를 사용하지만 tf2 브랜치는 최신 텐서플로 버전을 사용합니다. 텐서플로 2.4 버전의 코드를 확인하시려면 tf2 브랜치를 참고하세요.

감사합니다! 🙂

“케라스 창시자에게 배우는 딥러닝” 코드 TensorFlow 2 업데이트 안내

늦은 감이 있지만 <케라스 창시자에게 배우는 딥러닝> 책의 주피터 노트북을 텐서플로 2 기반으로 변경한 버전을 깃허브의 tf2 브랜치에 올렸습니다. 아쉽게도 몇 개의 노트북은 텐서플로 2와 호환되지 않아 부득이하게 tf.compat.v1.disable_v2_behavior() 를 사용했습니다.

텐서플로 2에 포함된 케라스 API를 사용하시는 경우에 조금 도움이 되셨으면 좋겠네요. 감사합니다! 🙂

“케라스 창시자에게 배우는 딥러닝”이 출간되었습니다.

keras_dl_b 케라스 창시자이자 구글 AI 연구원인 프랑소와 숄레(François Chollet)의 “Deep Learning with Python“의 번역서 <케라스 창시자에게 배우는 딥러닝>이 출간되었습니다! 온라인(전자책)/오프라인 서점에서 판매(YES24교보문고, 전자책) 중입니다.

이 책은 케라스를 사용하여 딥러닝의 기초와 다양한 실전 모델을 배울 수 있도록 안내합니다. 또 프랑소와의 딥러닝에 대한 견해와 전망을 엿볼 수 있습니다. 예제 코드는 깃허브에 공개되어 있습니다. 블로그에 실었던 원서에 대한 소개번역 후기도 참고하세요.

케라스의 새 버전에 맞추어 코드를 수정하고 에러타를 꾸준히 반영하겠습니다. 도서 메일링 리스트에 가입하면 편하게 에러타를 확인할 수 있습니다.

저자 프랑소와도 맘에 든다고 하네요! 🙂

책을 만드는 데 도움을 주신 많은 분들께 다시 한번 감사드립니다!

Deep Learning with Python 번역 후기

chollet-dlp-hi원래는 좀 더 일찍 시작했어야 했지만 ‘핸즈온 머신러닝‘ 작업이 늦어지면서 4월에 들어서 시작하였습니다. 케라스를 만든 프랑소와 숄레가 직접 쓴 책이라 이전부터 기대가 컸습니다. 역시나 아마존에서 높은 인기를 끌고 있네요. 4개월 동안의 작업을 마무리하면서 번역의 후기를 남깁니다.

‘Deep Learning with Python’은 케라스를 사용하여 딥러닝의 다양한 모델을 배울 수 있도록 안내합니다. 합성곱, 순환 신경망을 포함하여 컨브넷 필터 시각화, 딥드림, 뉴럴 스타일 트랜스퍼, VAE, GAN까지 다루고 있습니다. 재미있게도 수학 공식을 극도로 줄이고 대부분의 이론 설명을 파이썬 코드로 풀어갑니다. 딥러닝을 공부하려는 소프트웨어 엔지니어를 주요 독자층으로 생각하기 때문입니다.

순조롭게 진행되던 번역 작업은 6장을 만나면서 암초에 부딪혔습니다. 눈에 띄는 에러타(프랑소와가 왜 이렇게 썼을까..)가 많이 나왔습니다.  반면 매닝의 에러타 포럼 페이지는 사용자들이 올린 에러타만 쌓일 뿐 이에 대한 반응이 거의 없습니다. 저자가 바쁘기 때문인지 아니면 출판사의 게으름인지 알 도리가 없습니다. 신중하게 에러타를 선별하여 번역서에 반영하였습니다.

또 한번의 암초는 이번 여름의 더위입니다. 너무나 더워서 자정이 넘어서도 키보드를 두드릴 수가 없었죠. 거북이 같던 걸음마였지만 조금씩 진행된 것이 쌓여 결국 모든 번역을 마무리할 수 있었습니다. 이젠 조금 선선해진(?) 날씨에 1차 역자 교정을 마치고 홀가분한 마음으로 이 글을 적습니다. 남은 것은 머릿말과 저자 소개 정도네요.

이 책은 1부와 2부로 나뉘어져 있습니다. 1부(1장~4장)는 딥러닝의 기초, 2부(5장~9장)는 실전 딥러닝의 내용을 담고 있습니다. 간단한 목차는 다음과 같습니다.

  1. 딥러닝이란 무엇인가?
  2. 시작하기 전에: 신경망의 수학적 구성 요소
  3. 신경망 시작하기
  4. 머신 러닝의 기본 요소
  5. 컴퓨터 비전을 위한 딥러닝
  6. 텍스트와 시퀀스를 위한 딥러닝
  7. 딥러닝을 위한 고급 도구
  8. 생성 모델을 위한 딥러닝
  9. 결론

이 책에서 맘에 드는 두 개의 장을 고르라면 6장과 9장입니다. 6장은 시퀀스 처리를 위한 딥러닝을 소개합니다. 기본 RNN으로 시작해서 LSTM, GRU, 양방향 RNN, 1D 컨브넷과 이들의 조합으로 텍스트와 시계열 데이터를 처리하는 다양한 예를 소개합니다. 다른 딥러닝 책에 비해 RNN에 대한 내용이 좀 더 풍부합니다. 9장은 책의 전체 내용을 정리하면서 딥러닝의 한계와 발전 방향에 대해 소개를 합니다. 이 장에서 저자가 생각하는 딥러닝의 방향과 비전을 엿볼 수 있어 아주 좋았습니다.

번역서는 <케라스 창시자에게 배우는 딥러닝>이란 제목으로 출간될 예정입니다. 8월 말부터 베타 테스트를 시작합니다. 조판과 디자인까지 완료되면 10월 초에는 받아볼 수 있을 것 같습니다. 🙂