



안녕하세요. 박해선입니다. <케라스 창시자에게 배우는 딥러닝 2판>, <개발자를 위한 머신러닝&딥러닝>, <머신 러닝 교과서 3판>, <딥러닝 일러스트레이티드>의 텐서플로 코드를 코랩-텐서플로 버전 2.9.2에서 모두 재실행하여 깃허브에 업데이트했습니다. 감사합니다! (늦었지만 블로그에 방문하시는 모든 분들 새해 복 많이 받으세요! 🙂 )
안녕하세요. 박해선입니다. <케라스 창시자에게 배우는 딥러닝 2판>, <개발자를 위한 머신러닝&딥러닝>, <머신 러닝 교과서 3판>, <딥러닝 일러스트레이티드>의 텐서플로 코드를 코랩-텐서플로 버전 2.9.2에서 모두 재실행하여 깃허브에 업데이트했습니다. 감사합니다! (늦었지만 블로그에 방문하시는 모든 분들 새해 복 많이 받으세요! 🙂 )
케라스(Keras) 라이브러리의 창시자 프랑소와 숄레(François Chollet)가 쓴 <Deep Learning with Python 2nd Edition>의 번역서 <케라스 창시자에게 배우는 딥러닝 2판>이 출간되었습니다!
1판의 거의 모든 부분의 내용이 바뀌거나 새롭게 추가되었습니다. 컴퓨터 비전과 자연어 처리 분야의 새로운 예제가 추가 되었고 트랜스포머 모델을 밑바닥부터 만들어 볼 수 있습니다!
이 책은 특별히 풀컬러 양장본으로 출간되었습니다. 좋은 책을 오래 소장할 수 있도록 아낌없는 투자를 해 주신 길벗 출판사에 감사드립니다. 제일 좋아하는 책 중에 하나가 양장으로 출간되다니 너무 기쁩니다! ㅎ
올해 상반기에 작업한 <케라스 창시자에게 배우는 딥러닝 2판>과 <개발자를 위한 머신러닝&딥러닝> 책이 곧 출간될 예정입니다. 아마 두 책 모두 다음 주 중에 예약 판매가 시작되고 이달 말에 배송이 될 것 같습니다.
<케라스 창시자에게 배우는 딥러닝 2판>은 길벗 출판사의 머신러닝 시리즈 디자인을 선택하지 않고 특별히 원서 표지를 사용합니다. 또 고급 양장본으로 출간됩니다! 출판사에서 이렇게 한 책에 특별한 예외를 두는 것은 쉬운 일이 아닙니다. 이 책의 가치를 믿고 독자들의 의견을 적극 수용해 주신 덕분입니다. 이 책은 읽는데서 끝나지 않고 소장할 가치가 있는 거죠! 저에게도 아주 큰 영광입니다. 양장 도서를 갖게 되다니요! 🙂
<개발자를 위한 머신러닝&딥러닝>은 저자 로런스 모로니에게 출간 소식을 전했더니 특별히 스타필드 별마당도서관에 진열되었으면 좋겠다고 하네요. ㅎ
두 책 모두 기대하셔도 좋습니다. 감사합니다!
케라스(Keras) 라이브러리를 만든 프랑소와 숄레(François Chollet)의 딥러닝 책인 <Deep Learning with Python>의 2판 번역을 마쳤습니다. 원서는 현재 아마존에서 신경망 분야에서 5위에 랭크되어 있습니다. 예상대로 프랑소와의 책이라 매우 높은 인기를 얻고 있네요. 🙂
2판은 1판에 비해 많은 내용이 추가되고 콘텐츠 배열에도 변화가 있었습니다. 가장 대표적인 변화는 텐서플로 2.0 적용, 새로운 케라스 API, 합성곱과 순환 신경망 예제, 트랜스포머 추가 등입니다.
1판과 2판의 차이를 한눈에 보기 쉽게 그림으로 그려보았습니다. 그 아래에는 조금 더 자세히 2판의 장마다 1판의 어떤 부분과 연관이 있는지 새롭게 추가된 부분은 무엇인지 요약했습니다. 책을 보시는데 도움이 되셨으면 좋겠습니다. 이 번역서는 길벗 출판사를 통해 <케라스 창시자에게 배우는 딥러닝 2판>으로 곧 찾아뵙겠습니다! 🙂
build
, call
, __call__
메서드의 존재 이유를 상세히 설명하는 부분이 눈에 띄네요.fit()
, evaluate()
를 사용하면서 나만의 알고리즘을 적용하는 방법도 모두 설명하네요.timeseries_dataset_from_array
함수를 사용하여 코드가 훨씬 간결해졌습니다!TextVectorization
층과 함께 텍스트 전처리에 대해 자세히 소개합니다. BoW와 n-그램도 더욱 자세히 설명하고 1판에 없던 tf-idf 예제도 추가되었습니다. TextVectorization
층을 tf.data
파이프라인 또는 모델에 포함시킬 때를 명확하게 짚어주니 아주 좋네요. 그다음은 자연스럽게 임베딩 층으로 넘어가 사전 훈련된 단어 벡터를 사용하는 것까지 진행됩니다. 텍스트 분류에서 BoW와 RNN을 선택하는 기준에 대한 경험 법칙도 소개합니다. 이제 11장의 나머지 절반은 온통 트랜스포머 이야기입니다. 수식을 사용하지 않으면서 단계적으로 이해하기 쉽게 설명하는 저자의 능력이 여기에서 빛을 발합니다. 셀프 어텐션, 멀티 헤드 어텐션, 트랜스포머 인코더, 위치 임베딩까지 진행한 다음 다시 IMDB 텍스트를 분류해 봅니다. 그다음 텍스트 분류를 넘어서 기계 번역 예제(영어->스페인어)로 이동합니다. 먼저 LSTM으로 seq2seq 모델을 만들면서 인코더, 디코더의 상호 작용을 이해합니다. 그다음 트랜스포머 디코더를 만들고 트랜스포머 인코더와 합쳐서 완전한 기계 번역 모델을 만듭니다! 와우!!! 🙂[핸즈온 머신러닝 2], [GAN 인 액션], [파이썬을 활용한 머신러닝 쿡북], [케라스 창시자에게 배우는 딥러닝]의 주피터 코드를 텐서플로 2.6, 케라스 2.6 버전에서 테스트하여 깃허브에 반영하였습니다. [파이토치로 배우는 자연어 처리]는 파이토치 1.9 버전에서 테스트하여 깃허브에 반영하였습니다. 책을 보실 때 참고하세요. 감사합니다!
<케라스 창시자에게 배우는 딥러닝>의 주피터 노트북을 텐서플로 2.4에서 재실행하여 깃허브에 업로드했습니다.
책은 멀티백엔드 케라스 버전을 기반으로 쓰여졌습니다. 깃허브 저장소의 마스터 브랜치는 멀티백엔드 케라스를 사용하지만 tf2 브랜치는 최신 텐서플로 버전을 사용합니다. 텐서플로 2.4 버전의 코드를 확인하시려면 tf2 브랜치를 참고하세요.
감사합니다! 🙂
늦은 감이 있지만 <케라스 창시자에게 배우는 딥러닝> 책의 주피터 노트북을 텐서플로 2 기반으로 변경한 버전을 깃허브의 tf2 브랜치에 올렸습니다. 아쉽게도 몇 개의 노트북은 텐서플로 2와 호환되지 않아 부득이하게 tf.compat.v1.disable_v2_behavior() 를 사용했습니다.
텐서플로 2에 포함된 케라스 API를 사용하시는 경우에 조금 도움이 되셨으면 좋겠네요. 감사합니다! 🙂
케라스 창시자이자 구글 AI 연구원인 프랑소와 숄레(François Chollet)의 “Deep Learning with Python“의 번역서 <케라스 창시자에게 배우는 딥러닝>이 출간되었습니다! 온라인(전자책)/오프라인 서점에서 판매(YES24, 교보문고, 전자책) 중입니다.
이 책은 케라스를 사용하여 딥러닝의 기초와 다양한 실전 모델을 배울 수 있도록 안내합니다. 또 프랑소와의 딥러닝에 대한 견해와 전망을 엿볼 수 있습니다. 예제 코드는 깃허브에 공개되어 있습니다. 블로그에 실었던 원서에 대한 소개와 번역 후기도 참고하세요.
케라스의 새 버전에 맞추어 코드를 수정하고 에러타를 꾸준히 반영하겠습니다. 도서 메일링 리스트에 가입하면 편하게 에러타를 확인할 수 있습니다.
저자 프랑소와도 맘에 든다고 하네요! 🙂
책을 만드는 데 도움을 주신 많은 분들께 다시 한번 감사드립니다!
원래는 좀 더 일찍 시작했어야 했지만 ‘핸즈온 머신러닝‘ 작업이 늦어지면서 4월에 들어서 시작하였습니다. 케라스를 만든 프랑소와 숄레가 직접 쓴 책이라 이전부터 기대가 컸습니다. 역시나 아마존에서 높은 인기를 끌고 있네요. 4개월 동안의 작업을 마무리하면서 번역의 후기를 남깁니다.
‘Deep Learning with Python’은 케라스를 사용하여 딥러닝의 다양한 모델을 배울 수 있도록 안내합니다. 합성곱, 순환 신경망을 포함하여 컨브넷 필터 시각화, 딥드림, 뉴럴 스타일 트랜스퍼, VAE, GAN까지 다루고 있습니다. 재미있게도 수학 공식을 극도로 줄이고 대부분의 이론 설명을 파이썬 코드로 풀어갑니다. 딥러닝을 공부하려는 소프트웨어 엔지니어를 주요 독자층으로 생각하기 때문입니다.
순조롭게 진행되던 번역 작업은 6장을 만나면서 암초에 부딪혔습니다. 눈에 띄는 에러타(프랑소와가 왜 이렇게 썼을까..)가 많이 나왔습니다. 반면 매닝의 에러타 포럼 페이지는 사용자들이 올린 에러타만 쌓일 뿐 이에 대한 반응이 거의 없습니다. 저자가 바쁘기 때문인지 아니면 출판사의 게으름인지 알 도리가 없습니다. 신중하게 에러타를 선별하여 번역서에 반영하였습니다.
또 한번의 암초는 이번 여름의 더위입니다. 너무나 더워서 자정이 넘어서도 키보드를 두드릴 수가 없었죠. 거북이 같던 걸음마였지만 조금씩 진행된 것이 쌓여 결국 모든 번역을 마무리할 수 있었습니다. 이젠 조금 선선해진(?) 날씨에 1차 역자 교정을 마치고 홀가분한 마음으로 이 글을 적습니다. 남은 것은 머릿말과 저자 소개 정도네요.
이 책은 1부와 2부로 나뉘어져 있습니다. 1부(1장~4장)는 딥러닝의 기초, 2부(5장~9장)는 실전 딥러닝의 내용을 담고 있습니다. 간단한 목차는 다음과 같습니다.
이 책에서 맘에 드는 두 개의 장을 고르라면 6장과 9장입니다. 6장은 시퀀스 처리를 위한 딥러닝을 소개합니다. 기본 RNN으로 시작해서 LSTM, GRU, 양방향 RNN, 1D 컨브넷과 이들의 조합으로 텍스트와 시계열 데이터를 처리하는 다양한 예를 소개합니다. 다른 딥러닝 책에 비해 RNN에 대한 내용이 좀 더 풍부합니다. 9장은 책의 전체 내용을 정리하면서 딥러닝의 한계와 발전 방향에 대해 소개를 합니다. 이 장에서 저자가 생각하는 딥러닝의 방향과 비전을 엿볼 수 있어 아주 좋았습니다.
번역서는 <케라스 창시자에게 배우는 딥러닝>이란 제목으로 출간될 예정입니다. 8월 말부터 베타 테스트를 시작합니다. 조판과 디자인까지 완료되면 10월 초에는 받아볼 수 있을 것 같습니다. 🙂