‘파이썬 라이브러리를을 활용한 머신러닝‘ 2장의 지도학습에서 대표적인 앙상블 모델로 랜덤 포레스트를 소개하고 있습니다. 랜덤 포레스트는 부스트랩 샘플과 랜덤한 후보 특성들을 사용해 여러개의 결정 트리decision tree를 앙상블 합니다. 그래서 훈련 데이터에 과대적합을 막아주고 모델의 일반화 성능이 항상 단일 트리보다 높습니다. 랜덤 포레스트 모델의 변종으로 익스트림 랜덤 트리extremely randomized trees 혹은 엑스트라 트리ExtraTrees라 부르는 모델이 있습니다. 엑스트라 트리는 포레스트 트리의 각 후보 특성을 무작위로 분할하는 식으로 무작위성을 증가 시킵니다. Scikit-Learn은 앙상블 패키지 안에 엑스트라 트리 모델을 제공합니다.
from sklearn.ensemble import ExtraTreesClassifier
RandomForestClassifier 클래스가 사용하는 결정 트리는 DecisionTreeClassifier입니다. 이에 반해 ExtraTreesClassifier가 사용하는 결정 트리는 ExtraTreeClassifier입니다. 이름이 매우 비슷하니 유의하세요. ExtraTreesClassifier의 매개변수는 RandomForestClassifier와 동일합니다. 책에서와 같이 make_moons 데이터셋에 엑스트라 트리를 학습시켜 보겠습니다.
X, y = make_moons(n_samples=100, noise=0.25, random_state=3)
X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y,
random_state=42)
xtree = ExtraTreesClassifier(n_estimators=5, random_state=2)
xtree.fit(X_train, y_train)
엑스트라 트리가 사용하는 ExtraTreeClassifier()의 기본값으로 베이스 트리가 만들어 집니다. 랜덤 포레스트와 같이 베이스 모델을 직접 만들어 주입할 수는 없습니다. 엑스트라 트리가 만든 베이스 트리와 전체의 결정 경계를 그려 보겠습니다.

그래프에서 볼 수 있듯이 랜덤 포레스트가 만든 것보다 두 클래스의 경계를 잘 구분하고 있습니다. 사실 엑스트라 트리의 베이스 트리인 ExtraTreeClassifier는 DecisionTreeClassifier를 상속한 것이며 splitter=’best’가 아니고 splitter=’random’인 것과 max_features=’auto’인 것을 제외하고는 동일합니다.
이번에는 cancer 데이터셋에 적용해 보겠습니다.
X_train, X_test, y_train, y_test = train_test_split(cancer.data, cancer.target,
random_state=0)
xtree = ExtraTreesClassifier(n_estimators=100, random_state=0)
xtree.fit(X_train, y_train)
print("훈련 세트 정확도: {:.3f}".format(xtree.score(X_train, y_train)))
print("테스트 세트 정확도: {:.3f}".format(xtree.score(X_test, y_test)))
훈련 세트 정확도: 1.000
테스트 세트 정확도: 0.972
훈련 세트와 테스트 세트에서의 정확도는 랜덤 포레스트와 동일합니다. 하지만 특성 중요도를 그려보면 차이점을 발견할 수 있습니다.

이 그래프에서 볼 수 있듯이 엑스트라 트리가 랜덤 포레스트 보다 전반적으로 특성의 중요도를 더 높게 평가하고 있습니다. 이는 엑스트라 트리가 더 폭넓은 시각으로 특성들을 평가한다고 생각할 수 있습니다. 단일 결정 트리에서는 ‘worst radius’가 거의 독점적으로 주요한 특성으로 평가되었지만 랜덤 포레스트는 ‘worst perimeter’가 더 높았고 ‘worst area’는 훨씬 더 낮게 나왔습니다. 이에 비해 엑스트라 트리는 ‘worst area’, ‘worst perimeter’, ‘worst radius’, ‘mean concavity’ 등의 특성 중요도가 비교적 고르게 나온 것을 볼 수 있습니다.
당연히 회귀에 대응하는 엑스트라 트리인 ExtraTreesRegressor도 있습니다. ExtraTreesClassifier와 ExtraTreesRegressor의 매개변수 기본값은 부스트랩 샘플을 사용하지 않도록 bootstrap=False인 것을 제외하고는 랜덤 포레스트와 동일합니다. 이 포스트의 코드는 깃허브(https://github.com/rickiepark/introduction_to_ml_with_python/blob/master/ExtraTreesClassifier.ipynb)에서 확인하실 수 있습니다.