태그 보관물: Deep Learning

“케라스 창시자에게 배우는 딥러닝 2판”이 출간되었습니다!

케라스(Keras) 라이브러리의 창시자 프랑소와 숄레(François Chollet)가 쓴 <Deep Learning with Python 2nd Edition>의 번역서 <케라스 창시자에게 배우는 딥러닝 2판>이 출간되었습니다!

1판의 거의 모든 부분의 내용이 바뀌거나 새롭게 추가되었습니다. 컴퓨터 비전과 자연어 처리 분야의 새로운 예제가 추가 되었고 트랜스포머 모델을 밑바닥부터 만들어 볼 수 있습니다!

이 책은 특별히 풀컬러 양장본으로 출간되었습니다. 좋은 책을 오래 소장할 수 있도록 아낌없는 투자를 해 주신 길벗 출판사에 감사드립니다. 제일 좋아하는 책 중에 하나가 양장으로 출간되다니 너무 기쁩니다! ㅎ

지금 온라인/오프라인 구매가 가능합니다! [예스24] [교보문고] [알라딘]

“개발자를 위한 머신러닝&딥러닝” 책이 출간되었습니다!

구글의 수석 AI 애드보커트인 로런스 모로니(Laurence Moroney)가 쓴 아마존 베스트셀러 <AI and Machine Learning For Corders>를 번역한 <개발자를 위한 머신러닝&딥러닝> 책이 출간되었습니다!

이 책은 어려운 이론을 들먹이지 않고 직관적인 설명과 쉬운 비유로 신경망과 딥러닝의 정글을 헤쳐 나갑니다. 인공지능 석학 중 한명인 앤드류 응(Andew Ng)이 추천한 이 책으로 로런스 모로니와 흥미진진한 여행을 떠나보시죠! 여행 지도는 다음과 같습니다! 🙂

온라인/오프라인 서점에서 판매중입니다! [예스24] [교보문고] [알라딘] [한빛미디어]

“머신 러닝 교과서 3판”이 출간되었습니다.

세바스찬 라시카Sebastian Raschka와 바히드 미자리리Vahid Mirjalili가 쓴 아마존 베스트셀러 <Python Machine Learning 3rd Ed.>의 번역판인 <머신 러닝 교과서 3판>이 출간되었습니다!

3판은 사이킷런과 텐서플로 최신 버전의 변경 사항을 담았으며 코랩에서 실행할 수 있습니다. 특히 딥러닝 파트는 완전히 새롭게 리뉴얼되어 콘텐츠가 크게 보강되었습니다. 무엇보다도 이번에 새롭게 GAN강화 학습이 추가되어 머신러닝의 끝판왕이라고 부를만합니다!

출간에 맞추어 동영상 강의를 제작해 유튜브에 올리고 있습니다. 혼자 공부하시는 분들에게 도움이 되었으면 좋겠습니다. 궁금한 점이 있다면 블로그나 카카오 오픈채팅(http://bit.ly/tensor-chat, 참여코드: tensor)으로 알려 주세요!

온라인/오프라인 서점에서 판매 중입니다! 868페이지, 풀 컬러: 39,600원 [Yes24], [교보문고], [알라딘]

“케라스 창시자에게 배우는 딥러닝” 텐서플로 2.4 업데이트

<케라스 창시자에게 배우는 딥러닝>의 주피터 노트북을 텐서플로 2.4에서 재실행하여 깃허브에 업로드했습니다.

책은 멀티백엔드 케라스 버전을 기반으로 쓰여졌습니다. 깃허브 저장소의 마스터 브랜치는 멀티백엔드 케라스를 사용하지만 tf2 브랜치는 최신 텐서플로 버전을 사용합니다. 텐서플로 2.4 버전의 코드를 확인하시려면 tf2 브랜치를 참고하세요.

감사합니다! 🙂

“Do It! 딥러닝 입문” 인프런 강의가 등록되었습니다!

유튜브에 올린 <Do It! 딥러닝 입문> 강의가 인프런(inflearn.com)에 등록되었습니다! 인프런에서 진도를 관리하면 놓치는 강의 없이 재미있게 들을 수 있습니다. 강의를 게재하도록 도와주신 인프런 담당자님에게 감사드립니다! 😀

케라스 2.4.0 버전이 릴리스되었습니다.

케라스 2.4.0 버전이 릴리스되었습니다. 이전에 언급된 대로 keras-team/keras 레파지토리는 더이상 멀티 백엔드를 지원하지 않습니다. 2.4.0 버전은 기존 구현 코드를 모두 삭제하고 대신 tensorflow.keras로 리다이렉션합니다. 향후에는 tensorflow.keras 구현이 keras-team/keras로 옮겨올 것 같습니다.

제가 번역한 책 중에 케라스 멀티 백엔드 케라스 버전을 사용하는 책은 <케라스 창시자에게 배우는 딥러닝>과 <미술관에 GAN 딥러닝>입니다. 케라스를 최신 버전으로 업데이트하면 코드 결과가 크게 달라질 수 있습니다. 대신 케라스 2.2.4 버전을 사용하세요.

$ pip install keras==2.2.4

감사합니다!

Python Machine Learning 2nd Ed. 번역 후기

cover_1

세바스찬 라시카의 Python Machine Learning 2nd Ed. 의 번역과 역자 교정을 마쳤습니다. 작업된 책이 조판으로 넘어가면 늘 아쉽습니다. 이때는 지식보다는 끈기가 더 중요한 것 같습니다. 작업 과정을 되돌아 보며 후기를 남깁니다.

개인적으로 머신 러닝 분야의 실용서 베스트 네 개를 꼽으라면 안드리아스 뮐러와 사라 가이도의 “Introduction to Machine Leaning with Python“, 오렐리앙 제롱의 “Hands-On Machine Learning with Scikit-Learn and TensorFlow“, 프랑소와 숄레의 “Deep Learning with Python“, 세바스찬 라시카의 “Python Machine Learning”입니다. 제가 이 네 권을 모두 번역했다는 사실이 믿기지 않습니다. 사실 가장 먼저 보았던 세바스찬의 책은 1판의 번역서가 이미 다른 곳에서 출간되었기 때문에 2판을 번역할 기회를 얻기 힘들거라 생각했습니다. 정말 큰 행운이 따랐기 때문에 이 책을 번역할 수 있었습니다. 기회를 주신 길벗 출판사에 다시금 감사드립니다.

네 권의 책은 모두 나름대로 저마다 다른 색깔을 가지고 있습니다. 앤디의 책은 머신 러닝 파이프라인 전반의 흐름을 잘 정리하였습니다. 역시 사이킷런의 핵심 개발자답습니다. 오렐리앙의 책은 이론과 코드가 균형을 잘 잡고 있고 머신러닝과 딥러닝 부분을 잘 설명하고 있습니다. 프랑소와의 책은 이론보다 코드를 중심으로 딥러닝 특히 케라스 라이브러리를 중점적으로 다룹니다. 케라스 창시자인 그가 바라보는 딥러닝과 인공지능의 청사진을 엿볼 수도 있습니다.

세바스찬의 책은 이들 중 가장 먼저 아마존 인공지능 분야 베스트셀러가 된 책입니다. 오렐리앙의 책처럼 머신러닝과 딥러닝을 모두 아우르고 있지만 넘파이를 사용해 알고리즘을 밑바닥부터 만들기 시작합니다. 이론과 코드가 잘 안배되어 있고 사이킷런과 텐서플로를 함께 사용합니다. 다른 책에서는 잘 설명되지 않는 선형 판별 분석과 커널 PCA를 자세히 다루고 있습니다. 웹 애플리케이션에 머신러닝 모델을 임베딩하여 배포하는 장은 이 책의 특징 중 하나입니다.

Python Machine Learning 2판이 2017년에 출간되었기 때문에 사용한 라이브러리 버전이 낮습니다. 번역서에서는 사이킷런의 최신 버전 0.20을 기준으로 새롭게 바뀐 점과 중요한 변화를 포함시켰습니다. 딥러닝 챕터를 바꾸는 작업이 어려웠습니다. 작년 말에 텐서플로 2.0 프리뷰가 나왔지만 아직 정보가 부족했고 정식 릴리스 일정을 알 수 없기 때문입니다. 출판사와 협의한 끝에 출간 일정이 조금 늦춰지더라도 텐서플로 2.0을 기준으로 딥러닝 부분을 바꾸기로 결정했습니다. 덕분에 13~16장에 텐서플로 2.0 알파 버전에서 새롭게 바뀐 부분을 반영할 수 있었습니다.

작년 9월부터 작업을 시작했습니다. 다른 일들도 있었지만 너무 오래 걸렸네요. 매년 겨울마다 큰 곤욕을 치르는 것 같습니다. 친절하게도 저자 세바스찬이 직접 에러타로 인해 수정된 pdf와 이미지를 보내주었습니다. 제가 추가로 찾은 에러타는 원서 깃허브에 올렸고 신중하게 판단하여 번역서에 반영하였습니다. 세바스찬이 에러타와 함께 덕담도 건네 왔습니다. “It’s good to know that the translation will be in good hands! :)”.

복잡한 수식과 많은 주석 때문에 고생하셨을 디자이너와 교정자에게 감사드립니다. 편집과 번역 전반의 과정을 잘 안내해 주신 안윤경 님께도 감사드립니다. 부디 많은 사람들에게 사랑받는 책이 되었으면 좋겠습니다. 감사합니다! 😀

Spinning Up in Deep RL

OpenAI에서 강화 학습 교육 자료인 스피닝 업(Spinning Up)을 공개했습니다. 깃허브에서 관련 코드도 같이 제공됩니다. 아래 알고리즘 트리 중에서 스피닝 업에서 다루는 것은 Policy Gradient, PPO, TRPO, DDPG, TD3, SAC입니다.

rl_alg.tree.png

OpenAI에서 스피닝 업을 만들게 된 이유가 강화 학습을 배우기 위한 적절한 자료가 없기 때문이라고 합니다. 곰곰히 생각해 보면 일리가 있습니다. 딥러닝 관련되어서는 좋은 책과 온라인 자료를 쉽게 찾을 수 있지만 강화 학습은 많이 부족합니다. <핸즈온 머신러닝> 16장에서 강화 학습을 다루고 있지만 제한된 범위입니다. 서튼(Sutton) 교수의 <Reinforcement Learning: An Introduction> 2판이 곧 출간될 예정입니다. 이 책은 강화 학습의 대표적인 텍스트 북입니다. 조금 더 핸즈온 스타일의 강화 학습 책으로는 어떤 것이 있는지 찾아 보았습니다.

71y3a2bdjf3l  zai-drl-meap-hi  morales_drl_hiresmeap

맥심 라판(Maxim Lapan)이 쓴 팩킷(Packt)의 <Deep Reinforcement Learning Hands-On>이 아마존에서 독자 반응이 좋습니다. 이 책은 DQN, Policy Gradient, A2C, A3C, TRPO, PPO, I2A, AlphaGo Zero 등을 다룹니다.

매닝에서는 <Deep Reinforcement Learning In Action>과 <Grokking Deep Reinforcement Learning>이 준비되고 있습니다. 매닝 책은 출간되려면 아직 한참 기다려야 할 것 같네요. 재미있게도 이 세 책은 모두 파이토치를 사용합니다. 🙂

TensorFlow 1.12.0 RC0 Release

텐서플로 1.12.0 RC0 버전이 릴리스되었습니다. 1.11.0 버전이 나온지 한달도 되지 않았는데 정말 빠르네요. 심지어 1.11.0 버전에 맞추어 재실행한 <핸즈온 머신러닝> 주피터 노트북을 아직 커밋하기도 전입니다. 🙂

케라스 모델을 SavedModel 포맷으로 저장할 수 있어(via tf.contrib.saved_model.save_keras_model()) 텐서플로 서빙에 사용할 수 있는 점이 눈에 띄입니다. 텐서플로 1.12.0 RC0 버전은 pip 명령으로 손쉽게 설치할 수 있습니다. 파이썬 2.7(윈도우즈제외), 3.5, 3.6 버전을 지원합니다.

$ pip install --upgrade tensorflow
$ pip install --upgrade tensorflow-gpu

사이킷런 0.20 버전은 몇몇 버그를 수정한 0.20.1 버전이 릴리스될 것 같습니다. 🙂

(업데이트) 텐서플로 1.12.0 RC1 버전이 릴리스되었습니다.

(업데이트) 텐서플로 1.12.0 RC2 버전이 릴리스되었습니다.

“케라스 창시자에게 배우는 딥러닝”이 출간되었습니다.

keras_dl_b 케라스 창시자이자 구글 AI 연구원인 프랑소와 숄레(François Chollet)의 “Deep Learning with Python“의 번역서 <케라스 창시자에게 배우는 딥러닝>이 출간되었습니다! 온라인(전자책)/오프라인 서점에서 판매(YES24교보문고, 전자책) 중입니다.

이 책은 케라스를 사용하여 딥러닝의 기초와 다양한 실전 모델을 배울 수 있도록 안내합니다. 또 프랑소와의 딥러닝에 대한 견해와 전망을 엿볼 수 있습니다. 예제 코드는 깃허브에 공개되어 있습니다. 블로그에 실었던 원서에 대한 소개번역 후기도 참고하세요.

케라스의 새 버전에 맞추어 코드를 수정하고 에러타를 꾸준히 반영하겠습니다. 도서 메일링 리스트에 가입하면 편하게 에러타를 확인할 수 있습니다.

저자 프랑소와도 맘에 든다고 하네요! 🙂

책을 만드는 데 도움을 주신 많은 분들께 다시 한번 감사드립니다!