태그 보관물: Github

Repo. for NIPS 2016 papers

NIPS 2016 페이퍼가 구현된 레파지토리를 정리하는 레딧 포스트가 있습니다. 지금까지 13개의 깃허브 레파지토리가 정리되어 있습니다. 추가되는 대로 업데이트 하겠습니다. 혹시 이 외에 다른 레파지토리가 있다면 공유 부탁 드립니다.

  1. Using Fast Weights to Attend to the Recent Past (https://arxiv.org/abs/1610.06258)
    Repo: https://github.com/ajarai/fast-weights
  2. Learning to learn by gradient descent by gradient descent (https://arxiv.org/abs/1606.04474)
    Repo: https://github.com/deepmind/learning-to-learn
  3. R-FCN: Object Detection via Region-based Fully Convolutional Networks (https://arxiv.org/abs/1605.06409)
    Repo: https://github.com/Orpine/py-R-FCN
  4. Fast and Provably Good Seedings for k-Means (https://las.inf.ethz.ch/files/bachem16fast.pdf)
    Repo: https://github.com/obachem/kmc2
  5. How to Train a GAN
    Repo: https://github.com/soumith/ganhacks
  6. Phased LSTM: Accelerating Recurrent Network Training for Long or Event-based Sequences (https://arxiv.org/abs/1610.09513)
    Repo: https://github.com/dannyneil/public_plstm
  7. Generative Adversarial Imitation Learning (https://arxiv.org/abs/1606.03476)
    Repo: https://github.com/openai/imitation
  8. Adversarial Multiclass Classification: A Risk Minimization Perspective (https://www.cs.uic.edu/~rfathony/pdf/fathony2016adversarial.pdf)
    Repo: https://github.com/rizalzaf/adversarial-multiclass
  9. Unsupervised Learning for Physical Interaction through Video Prediction (https://arxiv.org/abs/1605.07157)
    Repo: https://github.com/tensorflow/models/tree/master/video_prediction
  10. Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks (https://arxiv.org/abs/1602.07868)
    Repo: https://github.com/openai/weightnorm
  11. Full-Capacity Unitary Recurrent Neural Networks (https://arxiv.org/abs/1611.00035)
    Repo: https://github.com/stwisdom/urnn
  12. Sequential Neural Models with Stochastic Layers (https://arxiv.org/pdf/1605.07571.pdf)
    Repo: https://github.com/marcofraccaro/srnn
  13. Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering (https://arxiv.org/abs/1606.09375)
    Repo: https://github.com/mdeff/cnn_graph
  14. Interpretable Distribution Features with Maximum Testing Power (https://papers.nips.cc/paper/6148-interpretable-distribution-features-with-maximum-testing-power.pdf)
    Repo: https://github.com/wittawatj/interpretable-test/
  15. Composing graphical models with neural networks for structured representations and fast inference (https://arxiv.org/abs/1603.06277)
    Repo: https://github.com/mattjj/svae
  16. Supervised Learning with Tensor Networks (https://arxiv.org/abs/1605.05775)
    Repo: https://github.com/emstoudenmire/TNML
  17. Fast ε-free Inference of Simulation Models with Bayesian Conditional Density Estimation: (https://arxiv.org/abs/1605.06376)
    Repo: https://github.com/gpapamak/epsilon_free_inference
  18. Bayesian Optimization for Probabilistic Programs (http://www.robots.ox.ac.uk/~twgr/assets/pdf/rainforth2016BOPP.pdf)
    Repo: https://github.com/probprog/bopp
  19. PVANet: Lightweight Deep Neural Networks for Real-time Object Detection (https://arxiv.org/abs/1611.08588)
    Repo: https://github.com/sanghoon/pva-faster-rcnn
  20. Data Programming: Creating Large Training Sets Quickly (https://arxiv.org/abs/1605.07723)
    Repo: https://github.com/HazyResearch/snorkel
  21. Convolutional Neural Fabrics for Architecture Learning (https://arxiv.org/pdf/1606.02492.pdf)
    Repo: https://github.com/shreyassaxena/convolutional-neural-fabrics
  22. Value Iteration Networks in TensorFlow (https://arxiv.org/abs/1602.02867)
    Repo: https://github.com/TheAbhiKumar/tensorflow-value-iteration-networks

TensorFlow with The Latest Papers

최근에 나온 뉴럴 네트워크 페이퍼들을 텐서플로우로 구현한 깃허브 레파지토리를 소개해 드립니다. 특히 RNN과 NLP에 관련된 페이퍼들인데 7월에 나온 페이퍼도 포함되어 있습니다. 아파치 2.0 라이센스이고 앞으로도 구현이 추가될 수 있을 것으로 기대해 봅니다. 아래는 이 레파지토리에서 텐서플로우로 구현한 페이퍼 리스트입니다.

(업데이트)