OpenAI에서 강화 학습 교육 자료인 스피닝 업(Spinning Up)을 공개했습니다. 깃허브에서 관련 코드도 같이 제공됩니다. 아래 알고리즘 트리 중에서 스피닝 업에서 다루는 것은 Policy Gradient, PPO, TRPO, DDPG, TD3, SAC입니다.
OpenAI에서 스피닝 업을 만들게 된 이유가 강화 학습을 배우기 위한 적절한 자료가 없기 때문이라고 합니다. 곰곰히 생각해 보면 일리가 있습니다. 딥러닝 관련되어서는 좋은 책과 온라인 자료를 쉽게 찾을 수 있지만 강화 학습은 많이 부족합니다. <핸즈온 머신러닝> 16장에서 강화 학습을 다루고 있지만 제한된 범위입니다. 서튼(Sutton) 교수의 <Reinforcement Learning: An Introduction> 2판이 곧 출간될 예정입니다. 이 책은 강화 학습의 대표적인 텍스트 북입니다. 조금 더 핸즈온 스타일의 강화 학습 책으로는 어떤 것이 있는지 찾아 보았습니다.
맥심 라판(Maxim Lapan)이 쓴 팩킷(Packt)의 <Deep Reinforcement Learning Hands-On>이 아마존에서 독자 반응이 좋습니다. 이 책은 DQN, Policy Gradient, A2C, A3C, TRPO, PPO, I2A, AlphaGo Zero 등을 다룹니다.
매닝에서는 <Deep Reinforcement Learning In Action>과 <Grokking Deep Reinforcement Learning>이 준비되고 있습니다. 매닝 책은 출간되려면 아직 한참 기다려야 할 것 같네요. 재미있게도 이 세 책은 모두 파이토치를 사용합니다. 🙂