Model evaluation, selection and algorithm selection

아래 글은 파이썬 머신 러닝의 저자 세바스찬 라쉬카(Sebastian Raschka)의 블로그인 “Model evaluation, model selection, and algorithm selection in machine learning“를 저자의 동의하에 번역한 것입니다. 전체 포스트는 4편으로 연재될 예정이었지만 현재 3편까지 쓰여졌습니다. 첫 번째 글은 성능추정에 대한 전반적인 소개와 홀드아웃 방법, 신뢰구간 등을 이항분포를 예로 들어 설명합니다. 두 번째 글은 반복적인 홀드아웃 방법과 부트스트래핑 방식을 설명합니다. 세 번째 포스트는 하이퍼파라미터 튜닝을 위한 홀드아웃 방법과 크로스밸리데이션, 모델 선택에 대해 설명합니다.

  1. 머신 러닝의 모델 평가와 모델 선택, 알고리즘 선택 – 1장. 기초
  2. 머신 러닝의 모델 평가와 모델 선택, 알고리즘 선택 – 2장. 부트스트래핑과 불확실성
  3. 머신 러닝의 모델 평가와 모델 선택, 알고리즘 선택 – 3장. 크로스밸리데이션과 하이퍼파라미터 튜닝

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.