카테고리 보관물: TensorFlow

TensorFlow 1.13.0 RC2 Release

텐서플로 1.13.0 RC2 버전이 릴리스되었습니다. 이제 공식적으로 파이썬 3.7 바이너리를 지원합니다. macOS와 리눅스는 파이썬 2.7, 3.3, 3.4, 3.5, 3.6, 3.7을 지원하고 Windows는 파이썬 3.5, 3.6, 3.7을 지원합니다.

자세한 내용은 릴리스 노트를 참고하세요. 텐서플로 1.13.0 RC2 버전은 pip를 사용해 설치할 수 있습니다.

$ pip install --upgrade --pre tensorflow
$ pip install --upgrade --pre tensorflow-gpu

TensorFlow 공식 케라스 튜토리얼 한글화

tensorflow-docs

텐서플로의 공식 케라스 튜토리얼을 한글로 번역했습니다. 어제 텐서플로 사이트에 정식으로 배포되었네요! 🙂

아직 케라스 튜토리얼(Learn and use ML)만 번역되어 있습니다. 향후 번역은 텐서플로 2.0에 맞추어 진행하려고 합니다. 3월 텐서플로 Dev 서밋이 기다려지네요! 어쩌면 텐서플로 사이트가 새로 단장될지도 모르겠습니다. 🙂

TensorFlow 1.13.0 RC1 Release

텐서플로 1.13.0 RC1 버전이 릴리스되었습니다. 아직 파이썬 3.7 바이너리는 지원하지 않습니다. 자세한 내용은 릴리스 노트를 참고하세요.

텐서플로 1.13.0 RC1 버전은 pip를 사용해 설치할 수 있습니다.

$ pip install --upgrade --pre tensorflow
$ pip install --upgrade --pre tensorflow-gpu

(업데이트) 리눅스, 맥, 윈도우즈 용 Python 3.7 바이너리를 지원하기 시작했습니다.

TensorFlow 1.13.0 support Python 3.7

그동안 텐서플로는 파이썬 3.6까지만 바이너리가 릴리스되었습니다. 많은 사람들이 파이썬 3.7 빌드를 원했었는데요. 텐서플로 1.13.0 부터 파이썬 3.7 바이너리가 공식적으로 릴리스될 예정입니다. tf-nightly 패키지에서 파이썬 3.7 빌드를 확인할 수 있습니다.

텐서플로 2.0 릴리스를 위한 깃허브 프로젝트 페이지도 오픈되었습니다. 물론 텐서플로 2.0도 파이썬 3.7을 공식적으로 지원할 예정입니다. 🙂

TensorFlow 1.13.0 RC0 Release

텐서플로 1.13.0 RC0 버전이 릴리스되었습니다. 두 달여 만에 릴리스입니다. TensorFlow Lite가 contrib 모듈 아래에서 코어로 승격되었습니다(tf.lite). 1.13.0 버전의 바이너리는 CUDA 10을 사용합니다. 더 자세한 내용은 릴리스 노트를 참고하세요.

텐서플로 1.13.0 RC0 버전은 pip를 사용해 설치할 수 있습니다.

$ pip install --upgrade --pre tensorflow
$ pip install --upgrade --pre tensorflow-gpu

텐서플로 2.0 준비로 한창 바쁜 것 같습니다. 텐서플로 Dev Summit이 3월에 열리는데 아마 이때쯤 나오지 않을까요? 🙂

TensorFlow nightly 2.0 preview

텐서플로 2.0 RC 버전이 언제 등장할지 아직 모르지만 맛보기는 가능합니다. 텐서플로 2.0 preview 버전이 pip로 제공되고 있습니다. 아쉽지만 리눅스 버전만 있습니다.

$ pip install tf-nightly-2.0-preview
$ pip install tf-nightly-gpu-2.0-preview

이 프리뷰는 현재 마스터 브랜치를 기반으로 빌드된 것 같습니다. 이전에 공지된 대로 tf.Session() 등이 tf.compat.v1 아래로 이동되고 즉시 실행(eager execution)이 기본으로 활성화됩니다.

텐서플로 2.0 방식을 적용한 MNIST 예제 노트북은 여기를 참고하세요. 이 노트북은 즉시 실행 튜토리얼과 많이 비슷한 것 같습니다. 또한 2.0 마이그레이션 스크립트를 참고하면 변경될 모습을 미리 가늠해 볼 수 있습니다. 🙂

(업데이트) 미디엄(Medium)에 텐서플로 2.0에 대한 포스팅이 올라왔습니다. 조만간 RC 버전이 릴리즈될 것 같네요. 이 글을 보면 이전에 언급한 대로 기존의 다양한 연산들이 케라스 API로 통일된다는 것을 알 수 있습니다. 케라스 API를 사용하는 방법은 Sequential 클래스나 Model 클래스입니다. 또한 tf.GradientTape() 함수를 사용하여 직접 그래디언트를 업데이트할 수도 있습니다. 다행히 Estimators는 구현이 바뀌겠지만 API는 유지된다고 하네요.

앞으로는 텐서플로를 배우려면 케라스를 배워야 합니다. 당연하지만 케라스를 배우는 가장 좋은 방법은 제가 번역한 <케라스 창시자에게 배우는 딥러닝> 책이죠! 🙂

TensorFlow 1.12.0 Release

텐서플로 1.12.0 버전이 릴리스되었습니다. 케라스 모델이 SavedModel 포맷(via tf.contrib.saved_model.save_keras_model())과 tf.data.Dataset을 지원합니다.

텐서플로 1.12.0 버전은 pip 명령으로 손쉽게 설치할 수 있습니다. 파이썬 2.7, 3.3, 3.4(이상 윈도우즈 제외), 3.5, 3.6 버전을 지원합니다.

$ pip install --upgrade tensorflow
$ pip install --upgrade tensorflow-gpu

CPU 사용자를 위한 conda 텐서플로 패키지는 아직 1.12.0 버전이 준비되지 않았습니다. 🙂

pip install tensorflow vs conda install tensorflow

tensorflowtraining

아나콘나(Anaconda)의 텐서플로가 1.9.0 버전부터 MKL-DNN 라이브러리를 사용하여 패키징되었습니다. 이 때문에 pip에 등록된 텐서플로 패키지보다 몇 배 빠르다고 합니다(미디엄 포스트, 아나콘다 블로그). 물론 CPU를 사용할 경우에 국한된 이야기입니다. 아나콘다에 포함된 파이썬 과학 패키지들이 MKL 라이브러리의 덕을 보는데요. 이제 텐서플로도 해당되는 것 같습니다. 앞으로는 CPU 텐서플로 설치 안내에 꼭 아나콘다도 포함해야 겠네요. 🙂

TensorFlow 1.12.0 RC0 Release

텐서플로 1.12.0 RC0 버전이 릴리스되었습니다. 1.11.0 버전이 나온지 한달도 되지 않았는데 정말 빠르네요. 심지어 1.11.0 버전에 맞추어 재실행한 <핸즈온 머신러닝> 주피터 노트북을 아직 커밋하기도 전입니다. 🙂

케라스 모델을 SavedModel 포맷으로 저장할 수 있어(via tf.contrib.saved_model.save_keras_model()) 텐서플로 서빙에 사용할 수 있는 점이 눈에 띄입니다. 텐서플로 1.12.0 RC0 버전은 pip 명령으로 손쉽게 설치할 수 있습니다. 파이썬 2.7(윈도우즈제외), 3.5, 3.6 버전을 지원합니다.

$ pip install --upgrade tensorflow
$ pip install --upgrade tensorflow-gpu

사이킷런 0.20 버전은 몇몇 버그를 수정한 0.20.1 버전이 릴리스될 것 같습니다. 🙂

(업데이트) 텐서플로 1.12.0 RC1 버전이 릴리스되었습니다.

(업데이트) 텐서플로 1.12.0 RC2 버전이 릴리스되었습니다.

Tensorflow 1.11.0 & Scikit-Learn 0.20.0 Release

텐서플로 1.11.0사이킷런 0.20.0 버전이 릴리즈되었습니다.

텐서플로 1.11.0부터는 cudnn 7.2 버전으로 패키징이 되어 있습니다. cudnn은 NVIDIA 개발자 사이트에서 다운로드 받을 수 있습니다. CUDA 9.0과 cudnn 7.3 버전에서 정상 작동됩니다. 텐서플로는 pip 명령으로 설치할 수 있습니다. 파이썬 2.7(윈도우즈제외), 3.5, 3.6 버전을 지원합니다.

$ pip install --upgrade tensorflow
$ pip install --upgrade tensorflow-gpu

사이킷런 0.20.0은 pipconda를 사용하여 설치할 수 있습니다.

$ conda update scikit-learn
$ pip install --upgrade scikit-learn