Category Archives: Data Science

“머신러닝 파워드 애플리케이션”이 곧 출간될 예정입니다!

여름 내 작업했던 <머신러닝 파워드 애플리케이션>이 곧 출간됩니다. 아마도 다음 주 부터 온라인 서점에서 예약 판매가 시작될 예정입니다.

이 책은 아마존 베스트 셀러인 <Building Machine Learning Powered Applications>의 번역서입니다. 많은 머신러닝 책이 알고리즘 설명에 집중하고 있다보니 상대적으로 머신러닝 애플리케이션을 만드는데 도움이 되는 자료는 찾기 힘듭니다. 이 책은 이런 부분의 간극을 채우기 위한 좋은 시도입니다. 문제 정의, 데이터셋 찾기, 모델 구축, 디버깅, 배포에 이르기까지 실전에서 고려해야 할 좋은 가이드와 피해야 할 위험 요소를 잘 설명하고 있습니다. 특히 이 분야 리더들과의 인터뷰를 함께 싣고 있어서 설명이 조금 더 피부에 와 닿는 것 같습니다.

저자 에마뉘엘 아메장이 특별히 한국어판을 위한 서문을 보내 주었습니다. 책에 에마뉘엘의 사진과 함께 실을 예정인데요. 맛보기로 에마뉘엘이 쓴 서문을 공개합니다! ㅎ

많은 관심 부탁드립니다! 😀

konlpy와 soynlp를 사용한 네이버 영화 리뷰 감성 분류

한글 데이터를 사용한 감성 분류 예제로는 네이버 영화 리뷰 데이터셋(https://github.com/e9t/nsmc)이 유명하죠. 파이썬에서 konlpysoynlp를 사용하여 네이버 영화 리뷰 데이터셋을 다룬 예제가 필요하신가요? “머신 러닝 교과서 2판”에 관련된 예제를 실을 예정입니다. 하지만 미리 맛보지 않을 이유는 없겠죠? Enjoy! 🙂

https://github.com/rickiepark/python-machine-learning-book-3rd-edition/blob/master/ch08/naver_movie_review.ipynb

* 참 konlpy 예제는 “(개정판)파이썬 라이브러리를 활용한 머신러닝” 책에도 있습니다! ㅎ

“파이썬을 활용한 머신러닝 쿡북”이 출간되었습니다!

x9791162241950크리스 알본의 ‘Machine Learning with Python Cookbook’을 번역한 <파이썬을 활용한 머신러닝 쿡북>이 출간되었습니다. 200개의 레시피에 머신러닝 작업에 필요한 핵심을 잘 담아 놓았습니다.

508페이지 로 뽑아 주신 한빛미디어 출판사에 감사드립니다. 온라인/오프라인 서점(교보문고, Yes24)에서 판매 중입니다. 절판되기 전에 어서 주문하세요! 🙂

SciPy 2017

파이썬 과학 컴퓨팅 컨퍼런스인 SciPy 2017이 텍사스주 오스틴에서 지난 10~16일에 열렸습니다. 올해에도 풍성한 토크튜토리얼 동영상이 유투브에 공개되었습니다. 이 중에 눈에 띄는 몇 개를 골라 보았습니다.

이 외에도 다양한 주제에 대한 여러 동영상이 많이 올라와 있습니다. 전체 리스트를 확인해 보세요.

토론토 대학의 CSCC11’s Lecture Note

토론토 대학의 강좌인 CSCC11: Introduction to Machine Learning and Data Mining의 2016년 가을 강의 노트가 온라인에 공개되어 있습니다. 아쉽게도 영상이 공개되지는 않습니다만 강의 노트를 볼 수 있어 다행입니다. 이 강의 노트는 모두 합치면 130여 페이지에 달하며 한 파일로 합친 것은 여기에서 다운 받을 수 있습니다.