태그 보관물: Keras

Deep Learning with Python 번역 후기

chollet-dlp-hi원래는 좀 더 일찍 시작했어야 했지만 ‘핸즈온 머신러닝‘ 작업이 늦어지면서 4월에 들어서 시작하였습니다. 케라스를 만든 프랑소와 숄레가 직접 쓴 책이라 이전부터 기대가 컸습니다. 역시나 아마존에서 높은 인기를 끌고 있네요. 4개월 동안의 작업을 마무리하면서 번역의 후기를 남깁니다.

‘Deep Learning with Python’은 케라스를 사용하여 딥러닝의 다양한 모델을 배울 수 있도록 안내합니다. 합성곱, 순환 신경망을 포함하여 컨브넷 필터 시각화, 딥드림, 뉴럴 스타일 트랜스퍼, VAE, GAN까지 다루고 있습니다. 재미있게도 수학 공식을 극도로 줄이고 대부분의 이론 설명을 파이썬 코드로 풀어갑니다. 딥러닝을 공부하려는 소프트웨어 엔지니어를 주요 독자층으로 생각하기 때문입니다.

순조롭게 진행되던 번역 작업은 6장을 만나면서 암초에 부딪혔습니다. 눈에 띄는 에러타(프랑소와가 왜 이렇게 썼을까..)가 많이 나왔습니다.  반면 매닝의 에러타 포럼 페이지는 사용자들이 올린 에러타만 쌓일 뿐 이에 대한 반응이 거의 없습니다. 저자가 바쁘기 때문인지 아니면 출판사의 게으름인지 알 도리가 없습니다. 신중하게 에러타를 선별하여 번역서에 반영하였습니다.

또 한번의 암초는 이번 여름의 더위입니다. 너무나 더워서 자정이 넘어서도 키보드를 두드릴 수가 없었죠. 거북이 같던 걸음마였지만 조금씩 진행된 것이 쌓여 결국 모든 번역을 마무리할 수 있었습니다. 이젠 조금 선선해진(?) 날씨에 1차 역자 교정을 마치고 홀가분한 마음으로 이 글을 적습니다. 남은 것은 머릿말과 저자 소개 정도네요.

이 책은 1부와 2부로 나뉘어져 있습니다. 1부(1장~4장)는 딥러닝의 기초, 2부(5장~9장)는 실전 딥러닝의 내용을 담고 있습니다. 간단한 목차는 다음과 같습니다.

  1. 딥러닝이란 무엇인가?
  2. 시작하기 전에: 신경망의 수학적 구성 요소
  3. 신경망 시작하기
  4. 머신 러닝의 기본 요소
  5. 컴퓨터 비전을 위한 딥러닝
  6. 텍스트와 시퀀스를 위한 딥러닝
  7. 딥러닝을 위한 고급 도구
  8. 생성 모델을 위한 딥러닝
  9. 결론

이 책에서 맘에 드는 두 개의 장을 고르라면 6장과 9장입니다. 6장은 시퀀스 처리를 위한 딥러닝을 소개합니다. 기본 RNN으로 시작해서 LSTM, GRU, 양방향 RNN, 1D 컨브넷과 이들의 조합으로 텍스트와 시계열 데이터를 처리하는 다양한 예를 소개합니다. 다른 딥러닝 책에 비해 RNN에 대한 내용이 좀 더 풍부합니다. 9장은 책의 전체 내용을 정리하면서 딥러닝의 한계와 발전 방향에 대해 소개를 합니다. 이 장에서 저자가 생각하는 딥러닝의 방향과 비전을 엿볼 수 있어 아주 좋았습니다.

번역서는 <케라스 창시자에게 배우는 딥러닝>이란 제목으로 출간될 예정입니다. 8월 말부터 베타 테스트를 시작합니다. 조판과 디자인까지 완료되면 10월 초에는 받아볼 수 있을 것 같습니다. 🙂

TensorFlow 1.9.0 RC0, Keras 2.2.0 Release

텐서플로 1.9.0 RC0 버전이 릴리즈되었습니다. tf.keras가 케라스 2.1.6 버전 API로 업데이트되었습니다. tf.layers 하위 클래스들이 tf.keras.layers를 상속하도록 변경되었습니다. 텐서플로의 고수준 API와 케라스 API가 공통 분모를 가지게 되었다는 점이 흥미롭습니다.

그 외에도 버그 수정과 기능의 변화가 많이 있습니다. 자세한 내용은 릴리즈 노트를 참고하세요.  1.9.0 RC0 버전은 pip 명령으로 간단히 설치할 수 있습니다.

$ pip install --upgrade --pre tensorflow
$ pip install --upgrade --pre tensorflow-gpu

(업데이트) 텐서플로 1.9.0 RC1 버전이 릴리즈되었습니다.
(업데이트) 텐서플로 1.9.0 RC2 버전이 릴리즈되었습니다.

케라스 2.2.0 버전이 릴리즈되었습니다. Model 클래스를 리팩토링한 것이 가장 큰 변화같습니다. ModelSequential 클래스의 상속관계를 직관적으로 만들었습니다. 이전 버전까지는 Sequential 클래스에서 Model 클래스의 객체를 만들어 model 속성에 저장했습니다. 이제는 Model 클래스의 단순 상속 클래스이기 때문에 평범한 파이썬 클래스처럼 Model 클래스의 메서드를 참조할 수 있습니다. Sequential 클래스의 model 속성은 deprecated 됩니다. 이런 변경 덕택에 나만의 모델 클래스를 쉽게 서브 클래스로 만들 수 있습니다.

또 하나의 변경 사항은 모델의 fit(), predict(), evaludate() 메서드의 입력값으로 텐서플로의 텐서를 넣을 수 있습니다. 물론 텐서플로 백엔드일 경우에만 가능합니다. make_one_shot_iterator() 메서드 등으로 tf.Iterator 객체를 만들어 주입할 수 있습니다.

자세한 내용은 릴리즈 노트를 참고하세요. 케라스는 pip로 간단하게 설치할 수 있습니다.

$ pip install keras

Keras Cheat Sheet

keras-cheatsheet

일전에 데이터캠프(datacamp.com)에서 만든 치트 시트 시리즈를 소개했었습니다. scikit-learn, numpy, pandas, scipy, matplotlib에 이어 이제는 케라스(Keras)의 치트 시트도 나왔습니다! 🙂

최근에는 케라스에 MXNetCNTK를 백엔드로 지원하기 위한 작업이 진행되고 있습니다. 이렇게 되면 래퍼(wrapper) 라이브러리의 지존이 되겠군요. 케라스 책으로는 처음 팩트(packtpub)에서 ‘Deep Learning with Keras‘가 출간되었습니다. 이 책도 읽고 나서 간단히 리뷰해보도록 하겠습니다.

Keras 2.0 Release

이전에 예고됐던 케라스 2.0이 릴리즈 되었습니다. 케라스 2.0도 많은 API 변경이 있습니다. 다행히(!) 앞으로 큰 변화는 없을 것이라고 하네요. 텐서플로우와 마찬가지로 케라스로 만든 코드도 다시 손을 봐야할 것 같습니다. 2.0 버전이 이미 PyPI에 올라가 있으므로 간단히 pip 명령으로 버전을 업그레이드 할 수 있습니다. 조금 더 자세한 내용은 케라스 2.0 릴리즈 노트를 참고하세요.

TensorFlow 1.0 RC2 Release & Keras 2

텐서플로우 1.0 RC2 버전이 릴리즈되었습니다. 다음주 텐서플로우 Dev Summit 위해 달리는 것 같습니다. 그리고 케라스(Keras)의 버전 2가 준비되고 있습니다. 케라스도 버전 2에서 API 변화가 있다고 합니다. 버전 1의 API 를 그대로 쓸 수 있지만 deprecated 경고가 뜨니 바꾸긴 해야할 것 같습니다. 그리고 마이크로 소프트의 CNTK도 케라스의 백엔드로 들어올 예정입니다.

또 프랑소와 숄레가 직접 예고한 대로 케라스가 텐서플로우 코드 베이스로 들어 갑니다. 다만 기존 케라스 깃허브는 그대로 유지되며 이로 인해 미치는 영향은 없을 것이라고 합니다. 텐서플로우로 들어간 케라스는 처음에는 tf.contrib 에 있다가 tf.keras 로 바뀔 것이라 합니다. 프랑소와가 케라스 코드를 4번째 재작성하고 있다는데 몇주만에 끝낼 모양입니다. @.@

텐서플로우 1.0 RC2 버전은 pip에 패키지 명을 직접 입력하여 설치할 수 있습니다.

##### 파이썬 2.7
# Ubuntu/Linux 64-bit, CPU only, Python 2.7
$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.0.0rc2-cp27-none-linux_x86_64.whl

# Ubuntu/Linux 64-bit, GPU enabled, Python 2.7
# Requires CUDA toolkit 8.0 and CuDNN v5.
$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.0.0rc2-cp27-none-linux_x86_64.whl

# Mac OS X, CPU only, Python 2.7:
$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-1.0.0rc2-py2-none-any.whl

# Mac OS X, GPU enabled, Python 2.7:
$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/mac/gpu/tensorflow_gpu-1.0.0rc2-py2-none-any.whl

##### 파이썬 3.x
# Ubuntu/Linux 64-bit, CPU only, Python 3.3
$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.0.0rc2-cp33-cp33m-linux_x86_64.whl

# Ubuntu/Linux 64-bit, GPU enabled, Python 3.3
# Requires CUDA toolkit 8.0 and CuDNN v5.
$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.0.0rc2-cp33-cp33m-linux_x86_64.whl

# Ubuntu/Linux 64-bit, CPU only, Python 3.4
$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.0.0rc2-cp34-cp34m-linux_x86_64.whl

# Ubuntu/Linux 64-bit, GPU enabled, Python 3.4
# Requires CUDA toolkit 8.0 and CuDNN v5.
$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.0.0rc2-cp34-cp34m-linux_x86_64.whl

# Ubuntu/Linux 64-bit, CPU only, Python 3.5
$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.0.0rc2-cp35-cp35m-linux_x86_64.whl

# Ubuntu/Linux 64-bit, GPU enabled, Python 3.5
# Requires CUDA toolkit 8.0 and CuDNN v5.
$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.0.0rc2-cp35-cp35m-linux_x86_64.whl

# Ubuntu/Linux 64-bit, CPU only, Python 3.6
$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.0.0rc2-cp36-cp36m-linux_x86_64.whl

# Ubuntu/Linux 64-bit, GPU enabled, Python 3.6
# Requires CUDA toolkit 8.0 and CuDNN v5.
$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.0.0rc2-cp36-cp36m-linux_x86_64.whl

# Mac OS X, CPU only, Python 3.4 or 3.5:
$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-1.0.0rc2-py3-none-any.whl

# Mac OS X, GPU enabled, Python 3.4 or 3.5:
$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/mac/gpu/tensorflow_gpu-1.0.0rc2-py3-none-any.whl

#### 설치
$ sudo pip install --upgrade $TF_BINARY_URL

윈도우즈 CPU:

C:\> pip install --upgrade https://storage.googleapis.com/tensorflow/windows/cpu/tensorflow-1.0.0rc2-cp35-cp35m-win_amd64.whl

윈도우즈 GPU:

C:\> pip install --upgrade https://storage.googleapis.com/tensorflow/windows/gpu/tensorflow_gpu-1.0.0rc2-cp35-cp35m-win_amd64.whl

New DL Book: DL with Python

chollet-dlp-meap-hi매닝(manning) 출판사에서 새 딥러닝 책인 “Deep Learning with Python“의 MEAP 버전이 공개되었습니다. 이 책은 케라스(Keras) 개발자 프랑소와 숄레(François Chollet)가 올해 쓰기로 했던 바로 그 책입니다. 1장은 무료로 공개되어 있고 현재 3장까지 쓰여졌습니다. 전체 책은 올 가을 이후에 만날 수 있을 것 같습니다.

PART 1: THE FUNDAMENTALS OF DEEP LEARNING
1 What is Deep Learning?
2 Before we start: the mathematical building blocks of neural networks
3 Getting started with neural networks
4 Fundamentals of machine learning
PART 2: DEEP LEARNING IN PRACTICE
5 Deep learning for computer vision
6 Deep learning for text and sequences
7 Advanced neural network design
8 Generative deep learning
9 Conclusion

(업데이트) 이 책은 길벗 출판사를 통해 번역서를 출간할 예정입니다. 이 책의 R 버전은 어딘지는 모르겠지만 준비되고 있는 것으로 알고 있습니다. 🙂

Keras go to TensorFlow

케라스(Keras)를 개발한 구글의 프랑소와 숄레(François Chollet)가 트위터에 남긴 글과 fast.ai 의 블로그로 미루어 보아 케라스가 텐서플로우의 contrib 아래로 들어갈 것 같습니다. 아마도 케라스에서 텐서플로우 부분만 떼어내서 들어가지 않을까 예상됩니다. tf.slim 은 contrib.laryercontrib.slim 에 있는 가장 널리 사용되는 텐서플로우 래퍼(wrapper) 중 하나입니다. 케라스가 포함되면 tf.slim과 함께 텐서플로우의 주요한 하이레벨 API 가 될 것 같습니다.

Quiver: Deep Visualization for Keras

카페(Caffe)의 모델에서 피처를 비주얼라이제이션 해 주는 Deep Visualization Toolbox(github)가 비교적 잘 알려져 있습니다. 아래 동영상으로도 유명하죠.

Deep Visualization Toolbox 의 케라스(Keras) 버전격인 퀴버(Quiver, github)가 만들어졌습니다. 케라스의 백엔드를 텐서플로우로 사용하면 퀴버가 텐서플로우에서도 유용하게 사용될 수 있을 것 같습니다. 케라스의 생태계가 빠르게 성장하고 있는 것 같네요. 아래 동영상과 깃허브 레파지토리를 함께 참고하세요.

(업데이트) 얼마전에 구글의 withgoogle.com 에 aiexperiments 가 추가되었는데요. 여기에 진 코간(Gene Kogan)이 만든 콘볼루션의 피처와 필터를 보여주는 데모 ‘What Neural Networks See‘ 가 있습니다. 동영상에서 데모를 보여주면서 설명도 해 주고 있습니다. 이 소스는 C++ 로 만들어져 있으며 깃허브에서 확인하실 수 있습니다.

Keras.js: run dl model with GPU

keras-js

케라스(Keras)로 훈련된 모델을 브라우저에서 실행시킬 수 있는 자바스크립트 라이브러리 Keras.js 가 공개되었습니다. 케라스로 만든 모델을 json 으로 출력하고 훈련된 파라메타는 HDF5로 저장합니다. 그런 후에 Keras.js 에서 제공하는 인코더로 훈련된 파라메타를 자바스크립트가 읽을 수 있도록 직렬화하여 모델 json과 함께 브라우저로 로드하여 사용합니다. Keras.js 는 WebGL 자바스크립트 라이브러인 weblas 를 사용하고 있어서 브라우저에서 GPU 가속을 사용할 수 있습니다. 기본으로 제공되는 모델 파라메타는 MNIST, ResNet50, Inception V3 등이 있습니다.

콘볼루션 뉴럴 네트워크를 훈련시킬 수 있는 자바스크립트 라이브러리로는 OpenAI 안드레이 카패시(Andrej Karpathy)의 ConvNetJS 가 유명합니다. 하지만 Keras.js 는 콘볼루션 뿐만 아니라 LSTM 모델 등 다양한 모델을 지원한다는 게 장점인 것 같습니다. 이전에 소개했던 regl-cnn 보다도 훨씬 발전된 라이브러리로 보입니다. 다양한 레이어와 활성화 함수를 구현한 Keras.js 의 소스는 깃허브에 MIT 라이센스로 공개되어 있습니다.

(업데이트) Keras.js 를 사용하여 브라우저에서 웹캠으로 찍은 이미지를 분류하는 데모가 공개되었습니다. ResNet50을 사용하였고 로딩되는데 조금 시간이 걸리지만 크롬 브라우저에서 잘 작동이 됩니다. 왼쪽 화면이 웹캠 영상이고 오른쪽 이미지가 대략 5초마다 찍힌 스샷 이미지입니다. 스샷이 찍히면 자동으로 아래쪽에 어떤 물체인지 분류가 됩니다.

kerasjs-resnet50-demo