핸즈온 머신러닝 주피터 노트북 업데이트 안내

핸즈온 머신러닝의 원서 주피터 노트북이 조금 업데이트되었습니다. 변경된 내용을 번역서의 깃허브에도 반영하였습니다. 다음은 변경된 상세 내용입니다.

  • 14_recurrent_neural_networks.ipynb
    • 레버(Reber) 문법 연습문제에서 my_reber_classifier의 경로를 변경하고 추정 확률을 퍼센트로 나타냅니다.
      with tf.Session() as sess:
      saver.restore(sess, "my_reber_classifier")
      y_proba_val = y_proba.eval(feed_dict={X: X_test, seq_length: l_test})
      
      print()
      print("레버 문자열일 추정 확률:")
      for index, string in enumerate(test_strings):
      print("{}: {:.2f}%".format(string, y_proba_val[index][0]))

      을 다음으로 변경합니다.

      with tf.Session() as sess:
      saver.restore(sess, "./my_reber_classifier")
      y_proba_val = y_proba.eval(feed_dict={X: X_test, seq_length: l_test})
      
      print()
      print("레버 문자열일 추정 확률:")
      for index, string in enumerate(test_strings):
      print("{}: {:.2f}%".format(string, 100 * y_proba_val[index][0]))
  • 02_end_to_end_machine_learning_project.ipynb
    • 사이킷런의 0.20 버전에 포함될 ColumnTransformer를 사용하면 책의 예제에서처럼 DataFrameSelectorFeatureUnion을 사용하지 않고 간단히 전체 파이프라인을 만들 수 있습니다. 아직 사이킷런 0.20 버전이 릴리스되기 전이므로 여기서는 future_encoders.pyColumnTransformer를 넣어 놓고 사용합니다.
      from future_encoders import ColumnTransformer
      
      num_attribs = list(housing_num)
      cat_attribs = ["ocean_proximity"]
      
      full_pipeline = ColumnTransformer([
      ("num", num_pipeline, num_attribs),
      ("cat", OneHotEncoder(), cat_attribs),
      ])
      
      housing_prepared = full_pipeline.fit_transform(housing)
      housing_prepared
  • 11_deep_learning.ipynb
    • 텐서플로 모델 재사용하기에서 노드 이름 수정
      hidden3 = tf.get_default_graph().get_tensor_by_name("dnn/hidden4/Relu:0")

      을 다음으로 변경합니다.

      hidden3 = tf.get_default_graph().get_tensor_by_name("dnn/hidden3/Relu:0")
  • 11_deep_learning_exercises.ipynb
    • 불필요한 변수 초기화 루틴 삭제
      for var in output_layer_vars: 
          var.initializer.run()
  • extra_tensorflow_reproducibility.ipynb 파일 추가

감사합니다! 🙂

답글 남기기

아래 항목을 채우거나 오른쪽 아이콘 중 하나를 클릭하여 로그 인 하세요:

WordPress.com 로고

WordPress.com의 계정을 사용하여 댓글을 남깁니다. 로그아웃 /  변경 )

Google+ photo

Google+의 계정을 사용하여 댓글을 남깁니다. 로그아웃 /  변경 )

Twitter 사진

Twitter의 계정을 사용하여 댓글을 남깁니다. 로그아웃 /  변경 )

Facebook 사진

Facebook의 계정을 사용하여 댓글을 남깁니다. 로그아웃 /  변경 )

%s에 연결하는 중

This site uses Akismet to reduce spam. Learn how your comment data is processed.